[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

FJA-Net: A Fuzzy Joint Attention Guided Network for Classification of Glaucoma Stages

Published: 01 October 2024 Publication History

Abstract

Glaucoma is a progressive eye disorder that can lead to permanent vision loss if not identified and treated promptly. Thus, timely glaucoma detection is paramount to developing a more efficient treatment plan and saving vision loss. Despite the promising performance achieved by deep learning methods in specific convolutional neural networks (CNNs) for glaucoma screening using fundus images, they are confined to binary classification tasks (i.e., healthy versus glaucoma) and cannot detect glaucoma stages. However, it is challenging to diagnose the glaucoma stages accurately due to considerable interstage similarities, the subtle changes in the size of lesions, and the presence of irrelevant features. Moreover, fundus images encompass significant uncertain information, which cannot be effectively captured through conventional CNNs. To solve these problems, we present a novel fuzzy joint attention-guided network called FJA-Net for the screening of glaucoma stages. Specifically, we introduce a fuzzy joint attention module (FJAM) on top of a backbone, composed of a local–global channel and spatial attention block, to learn comprehensive feature correlations along the relevant channels and spatial positions, each followed by a fuzzy layer to reduce the uncertainty in the feature representations. The FJAM aids in learning stage-specific and fine-grained features from critical regions of the fundus images. In addition, we propose a combined loss function to train the parameters of our FJA-Net to ensure better generalization and robustness. We evaluate the proposed model on two datasets, and the results of the comparative analysis demonstrate that our FJA-Net outperforms state-of-the-art CNN-based glaucoma classification approaches.

References

[1]
H. Fu et al., “Disc-aware ensemble network for glaucoma screening from fundus image,” IEEE Trans. Med. Imag., vol. 37, no. 11, pp. 2493–2501, Nov. 2018.
[2]
D. Parashar and D. Agrawal, “2-D compact variational mode decomposition-based automatic classification of glaucoma stages from fundus images,” IEEE Trans. Instrum. Meas., vol. 70, Apr. 2021, Art. no.
[3]
H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Brit. J. Ophthalmol., vol. 90, no. 3, pp. 262–267, 2006.
[4]
Y.-C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C.-Y. Cheng, “Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis,” Ophthalmology, vol. 121, no. 11, pp. 2081–2090, 2014.
[5]
S. Dua, U. R. Acharya, P. Chowriappa, and S.V. Sree, “Wavelet-based energy features for glaucomatous image classification,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 1, pp. 80–87, Jan. 2011.
[6]
J. H. Kumar, C. S. Seelamantula, Y. S. Kamath, and R. Jampala, “Rim-to-disc ratio outperforms cup-to-disc ratio for glaucoma prescreening,” Sci. Rep., vol. 9, no. 1, 2019, Art. no.
[7]
C. Muramatsu et al., “Detection of retinal nerve fiber layer defects on retinal fundus images for early diagnosis of glaucoma,” J. Biomed. Opt., vol. 15, no. 1, pp. 16021–16021, 2010.
[8]
G. D. Joshi, J. Sivaswamy, and S. Krishnadas, “Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment,” IEEE Trans. Med. Imag., vol. 30, no. 6, pp. 1192–1205, Jun. 2011.
[9]
J. Cheng et al., “Superpixel classification based optic disc and optic cup segmentation for glaucoma screening,” IEEE Trans. Med. Imag., vol. 32, no. 6, pp. 1019–1032, Jun. 2013.
[10]
J. Cheng, F. Yin, D. W. K. Wong, D. Tao, and J. Liu, “Sparse dissimilarity-constrained coding for glaucoma screening,” IEEE Trans. Biomed. Eng., vol. 62, no. 5, pp. 1395–1403, May 2015.
[11]
M. R. K. Mookiah, U. R. Acharya, C. M. Lim, A. Petznick, and J. S. Suri, “Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features,” Knowl.-Based Syst., vol. 33, pp. 73–82, 2012.
[12]
U. R. Acharya et al., “Decision support system for the glaucoma using Gabor transformation,” Biomed. Signal Process. Control, vol. 15, pp. 18–26, 2015.
[13]
S. Maheshwari, R. B. Pachori, and U. R. Acharya, “Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images,” IEEE J. Biomed. Health Informat., vol. 21, no. 3, pp. 803–813, May 2017.
[14]
T. Kausu, V. P. Gopi, K. A. Wahid, W. Doma, and S. I. Niwas, “Combination of clinical and multiresolution features for glaucoma detection and its classification using fundus images,” Biocybernetics Biomed. Eng., vol. 38, no. 2, pp. 329–341, 2018.
[15]
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 2014, arXiv:1409.1556.
[16]
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.
[17]
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.
[18]
Y. Wu, J. Li, Y. Yuan, A. K. Qin, Q.-G. Miao, and M.-G. Gong, “Commonality autoencoder: Learning common features for change detection from heterogeneous images,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 9, pp. 4257–4270, Sep. 2022.
[19]
X. Chen, Y. Xu, D. W. K. Wong, T. Y. Wong, and J. Liu, “Glaucoma detection based on deep convolutional neural network,” in 2015 37th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2015, pp. 715–718.
[20]
U. Raghavendra, H. Fujita, S. V. Bhandary, A. Gudigar, J. H. Tan, and U. R. Acharya, “Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images,” Inf. Sci., vol. 441, pp. 41–49, 2018.
[21]
M. N. Bajwa et al., “G1020: A benchmark retinal fundus image dataset for computer-aided glaucoma detection,” in 2020 Int. Joint Conf. Neural Netw., 2020, pp. 1–7.
[22]
M. Juneja, S. Thakur, A. Uniyal, A. Wani, N. Thakur, and P. Jindal, “Deep learning-based classification network for glaucoma in retinal images,” Comput. Elect. Eng., vol. 101, 2022, Art. no.
[23]
J. M. Ahn, S. Kim, K.-S. Ahn, S.-H. Cho, K. B. Lee, and U. S. Kim, “A deep learning model for the detection of both advanced and early glaucoma using fundus photography,” PLoS One, vol. 13, no. 11, 2018, Art. no.
[24]
J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 7132–7141.
[25]
C. H. Song, H. J. Han, and Y. Avrithis, “All the attention you need: Global-local, spatial-channel attention for image retrieval,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2022, pp. 2754–2763.
[26]
Y. Wu, X. Hu, Y. Zhang, M. Gong, W. Ma, and Q. Miao, “SACF-Net: Skip-attention based correspondence filtering network for point cloud registration,” IEEE Trans. Circuits Syst. Video Technol., vol. 33, no. 8, pp. 3585–3595, Aug. 2023.
[27]
Y. Yuan, Y. Wu, X. Fan, M. Gong, W. Ma, and Q. Miao, “EGST: Enhanced geometric structure transformer for point cloud registration,” IEEE Trans. Vis. Comput. Graph., vol. 30, no. 9, pp. 6222–6234, Sep. 2024.
[28]
X. Huang, W. Qu, Y. Zuo, Y. Fang, and X. Zhao, “IMFNet: Interpretable multimodal fusion for point cloud registration,” IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 12323–12330, Oct. 2022.
[29]
S. Lee, S. Lee, H. Seong, and E. Kim, “Revisiting self-similarity: Structural embedding for image retrieval,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023, pp. 23412–23421.
[30]
H. Tian, S. Lu, Y. Sun, and H. Li, “GC-Net: Global and class attention blocks for automated glaucoma classification,” in 2022 IEEE 17th Conf. Ind. Electron. Appl., 2022, pp. 498–503.
[31]
D. Das and D. R. Nayak, “GS-Net: Global self-attention guided CNN for multi-stage glaucoma classification,” in 2023 IEEE Int. Conf. Image Process., 2023, pp. 3454–3458.
[32]
D. Das, D. R. Nayak, and R. B. Pachori, “CA-Net: A novel cascaded attention-based network for multi-stage glaucoma classification using fundus images,” IEEE Trans. Instrum. Meas., vol. 72, Oct. 2023, Art. no.
[33]
Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, “A hierarchical fused fuzzy deep neural network for data classification,” IEEE Trans. Fuzzy Syst., vol. 25, no. 4, pp. 1006–1012, Aug. 2017.
[34]
Y. Nan et al., “Fuzzy attention neural network to tackle discontinuity in airway segmentation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 6, pp. 7391–7404, Jun. 2024.
[35]
K. P. Korshunova, “A convolutional fuzzy neural network for image classification,” in Proc. 3rd Russian-Pacific Conf. Comput. Technol. Appl., 2018, pp. 1–4.
[36]
C. Guan, S. Wang, and A. W.-C. Liew, “Lip image segmentation based on a fuzzy convolutional neural network,” IEEE Trans. Fuzzy Syst., vol. 28, no. 7, pp. 1242–1251, Jul. 2020.
[37]
U. R. Acharya et al., “Automated diagnosis of glaucoma using texture and higher order spectra features,” IEEE Trans. Inf. Technol. Biomed., vol. 15, no. 3, pp. 449–455, May 2011.
[38]
K. P. Noronha, U. R. Acharya, K. P. Nayak, R. J. Martis, and S. V. Bhandary, “Automated classification of glaucoma stages using higher order cumulant features,” Biomed. Signal Process. Control, vol. 10, pp. 174–183, 2014.
[39]
S. Maheshwari, V. Kanhangad, R. B. Pachori, S. V. Bhandary, and U. R. Acharya, “Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques,” Comput. Biol. Med., vol. 105, pp. 72–80, 2019.
[40]
S. Maheshwari, R. B. Pachori, V. Kanhangad, S. V. Bhandary, and U. R. Acharya, “Iterative variational mode decomposition based automated detection of glaucoma using fundus images,” Comput. Biol. Med., vol. 88, pp. 142–149, 2017.
[41]
D. K. Agrawal, B. S. Kirar, and R. B. Pachori, “Automated glaucoma detection using quasi-bivariate variational mode decomposition from fundus images,” IET Image Process., vol. 13, no. 13, pp. 2401–2408, 2019.
[42]
T. Li et al., “Applications of deep learning in fundus images: A review,” Med. Image Anal., vol. 69, 2021, Art. no.
[43]
A. Li, J. Cheng, D. W. K. Wong, and J. Liu, “Integrating holistic and local deep features for glaucoma classification,” in 2016 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2016, pp. 1328–1331.
[44]
A. Pal, M. R. Moorthy, and A. Shahina, “G-EyeNet: A convolutional autoencoding classifier framework for the detection of glaucoma from retinal fundus images,” in Proc. 25th IEEE Int. Conf. Image Process., 2018, pp. 2775–2779.
[45]
Y. Chai, H. Liu, and J. Xu, “Glaucoma diagnosis based on both hidden features and domain knowledge through deep learning models,” Knowl.-Based Syst., vol. 161, pp. 147–156, 2018.
[46]
S. Phasuk et al., “Automated glaucoma screening from retinal fundus image using deep learning,” in 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2019, pp. 904–907.
[47]
D. R. Nayak, D. Das, B. Majhi, S. V. Bhandary, and U. R. Acharya, “ECNet: An evolutionary convolutional network for automated glaucoma detection using fundus images,” Biomed. Signal Process. Control, vol. 67, 2021, Art. no.
[48]
Á. S. Hervella, J. Rouco, J. Novo, and M. Ortega, “End-to-end multi-task learning for simultaneous optic disc and cup segmentation and glaucoma classification in eye fundus images,” Appl. Soft Comput., vol. 116, 2022, Art. no.
[49]
D. Parashar and D. K. Agrawal, “Automated classification of glaucoma stages using flexible analytic wavelet transform from retinal fundus images,” IEEE Sensors J., vol. 20, no. 21, pp. 12885–12894, Nov. 2020.
[50]
L. Li et al., “A large-scale database and a CNN model for attention-based glaucoma detection,” IEEE Trans. Med. Imag., vol. 39, no. 2, pp. 413–424, Feb. 2020.
[51]
W. Ding, M. Abdel-Basset, H. Hawash, and W. Pedrycz, “Multimodal infant brain segmentation by fuzzy-informed deep learning,” IEEE Trans. Fuzzy Syst., vol. 30, no. 4, pp. 1088–1101, Apr. 2022.
[52]
H. Zhang et al., “Self-attention generative adversarial networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 7354–7363.
[53]
F. Fumero, S. Alayón, J. L. Sanchez, J. Sigut, and M. Gonzalez-Hernandez, “Rim-one: An open retinal image database for optic nerve evaluation,” in 2011 24th Int. Symp. Comput.-Based Med. Syst., 2011, pp. 1–6.
[54]
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2014, arXiv:1412.6980.
[55]
F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1251–1258.
[56]
G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4700–4708.
[57]
M. Tan and Q. Le, “EfficientNet:Rethinking model scaling for convolutional neural networks,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 6105–6114.
[58]
A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for mobile vision applications,” 2017, arXiv:1704.04861.
[59]
A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” in Proc. Int. Conf. Learn. Representations, 2021.
[60]
Z. Liu et al., “Swin transformer V2: Scaling up capacity and resolution,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 12009–12019.
[61]
Z. Tu et al., “MaxViT: Multi-axis vision transformer,” in Proc. Eur. Conf. Comput. Vis., 2022, pp. 459–479.
[62]
L. Beyer et al., “FlexiViT: One model for all patch sizes,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2023, pp. 14496–14506.
[63]
M. Ding, B. Xiao, N. Codella, P. Luo, J. Wang, and L. Yuan, “DaViT: Dual attention vision transformers,” in Proc. Eur. Conf. Comput. Vis., 2022, pp. 74–92.
[64]
W. Yu et al., “MetaFormer baselines for vision,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 46, no. 2, pp. 896–912, Feb. 2024.
[65]
S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.
[66]
J. Park, S. Woo, J.-Y. Lee, and I. S. Kweon, “BAM: Bottleneck attention module,” in Proc. Brit. Mach. Vis. Conf., 2018.
[67]
A. He, T. Li, N. Li, K. Wang, and H. Fu, “CABNet: Category attention block for imbalanced diabetic retinopathy grading,” IEEE Trans. Med. Imag., vol. 40, no. 1, pp. 143–153, Jan. 2021.
[68]
Y. Cao, J. Xu, S. Lin, F. Wei, and H. Hu, “GCNet: Non-local networks meet squeeze-excitation networks and beyond,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshops, 2019, pp. 1971–1980.
[69]
D. Misra, T. Nalamada, A. U. Arasanipalai, and Q. Hou, “Rotate to attend: Convolutional triplet attention module,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2021, pp. 3139–3148.
[70]
A. Jha, S. Bose, and B. Banerjee, “GAF-Net: Improving the performance of remote sensing image fusion using novel global self and cross attention learning,” in Proc. IEEE/CVF Winter Conf. Appl. Comput. Vis., 2023, pp. 6354–6363.
[71]
L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, no. 11, pp. 2579–2605, 2008.
[72]
A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian, “Grad-CAM : Generalized gradient-based visual explanations for deep convolutional networks,” in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2018, pp. 839–847.
[73]
A. Radford et al., “Learning transferable visual models from natural language supervision,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 8748–8763.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems  Volume 32, Issue 10
Oct. 2024
597 pages

Publisher

IEEE Press

Publication History

Published: 01 October 2024

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 29 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media