[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Algorithm 1031: MQSI—Monotone Quintic Spline Interpolation

Published: 21 March 2023 Publication History

Abstract

MQSI is a Fortran 2003 subroutine for constructing monotone quintic spline interpolants to univariate monotone data. Using sharp theoretical monotonicity constraints, first and second derivative estimates at data provided by a quadratic facet model are refined to produce a univariate C2 monotone interpolant. Algorithm and implementation details, complexity and sensitivity analyses, usage information, a brief performance study, and comparisons with other spline approaches are included.

Supplementary Material

PDF File (3570157.pdf)

References

[1]
M. Abbas, A. A. Majid, and J. M. Ali. 2012. Monotonicity-preserving C2 rational cubic spline for monotone data. Appl. Math. Comput. 219, 6 (2012), 2885–2895.
[2]
T. Berglund, A. Brodnik, H. Jonsson, M. Staffanson, and I. Soderkvist. 2009. Planning smooth and obstacle-avoiding B-spline paths for autonomous mining vehicles. IEEE Trans. Autom. Sci. Eng. 7, 1 (2009), 167–172.
[3]
A. Brennan. 2020. Measure, modulation and metadesign: NC fabrication in industrial design and architecture. J. Des. Hist. 33, 1 (2020), 66–82.
[4]
K. W. Cameron, A. Anwar, Y. Cheng, L. Xu, B. Li, U. Ananth, J. Bernard, C. Jearls, T. C. H. Lux, Y. Hong, L. T. Watson, and A. R. Butt. 2019. MOANA: modeling and analyzing I/O variability in parallel system experimental design. IEEE Trans. Parallel Distrib. Syst. 30, 8 (2019), 1843–1856.
[5]
P. Costantini. 1986. On monotone and convex spline interpolation. Math. Comput. 46, 173 (1986), 203–214.
[6]
P. Costantini. 1997. Algorithm 770: BVSPIS – A package for computing boundary-valued shape-preserving interpolating splines. ACM Trans. Math. Softw. 23, 2 (1997), 252–254.
[7]
P. Costantini. 1997. Boundary-valued shape-preserving interpolating splines. ACM Trans. Math. Softw. 23, 2 (1997), 229–251.
[8]
I. Cravero and C. Manni. 2003. Shape-preserving interpolants with high smoothness. J. Computat. Appl. Math. 157, 2 (2003), 383–405.
[9]
R. Delbourgo and J. A. Gregory. 1983. C2 rational quadratic spline interpolation to monotonic data. IMA J. Numer. Anal. 3, 2 (1983), 141–152.
[10]
R. A. DeVore. 1977. Monotone approximation by splines. SIAM J. Math. Anal. 8, 5 (1977), 891–905.
[11]
R. L. Dougherty, A. Edelman, and J. M. Hyman. 1989. Nonnegativity-, monotonicity- convexity-preserving cubic and quintic Hermite interpolation. Math. Comput. 52, 186 (1989), 471–494.
[12]
J. C. Fiorot and J. Tabka. 1991. Shape-preserving C2 cubic polynomial interpolating splines. Math. Comput. 57, 195 (1991), 291–298.
[13]
F. Fritsch and R. Carlson.1980. Monotone piecewise cubic interpolation. SIAM J. Numer. Anal. 17, 2 (1980), 238–246.
[14]
F. N. Fritsch. 1982. Piecewise cubic Hermite interpolation package, final specifications. Computer Documentation UCID-30194, Lawrence Livermore National Laboratory (1982).
[15]
J. A. Gregory. 1985. Shape Preserving Spline Interpolation. Technical Report. NASA, Langley Research Center Computational Geometry and Computer-Aided Design.
[16]
J. A. Gregory and R. Delbourgo. 1982. Piecewise rational quadratic interpolation to monotonic data. IMA J. Numer. Anal. 2, 2 (1982), 123–130.
[17]
X. Han. 2018. Shape-preserving piecewise rational interpolation with higher order continuity. Appl. Math. Comput. 337:1–13 (2018).
[18]
R. M. Haralick and L. T. Watson. 1981. A facet model for image data. Comput. Graph. Image Process. 15 (1981), 113–129.
[19]
D. L. Herman and M. J. Oftedal. 2015. Techniques and Workflows for Computer Graphics Animation Systems. Technical Report. US Patent 9,216,351.
[20]
W. Heß and J. W. Schmidt. 1994. Positive quartic, monotone quintic C2-spline interpolation in one and two dimensions. J. Comput. Appl. Math. 55, 1 (1994), 51–67.
[21]
H. T. Huynh. 1993. Accurate monotone cubic interpolation. SIAM J. Numer. Anal. 30, 1 (1993), 57–100.
[22]
G. D. Knott. 2012. Interpolating cubic splines. Springer Sci. Bus. Media 18 (2012).
[23]
F. Leitenstorfer and G. Tutz. 2006. Generalized monotonic regression based on B-splines with an application to air pollution data. Biostatistics 8, 3 (2006), 654–673.
[24]
T. C. H. Lux. 2020. Interpolants and Error Bounds for Modeling and Predicting Variability in Computer Systems. Ph.D. Dissertation. Ph.D. thesis, Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
[25]
T. C. H. Lux, L. T. Watson, T. H. Chang, L. Xu, Y. Wang, and Y. Hong. 2020. An algorithm for constructing monotone quintic interpolating splines. In SCSSpring Simulation Multiconference, High Performance Computing Symposium.
[26]
C. Manni and P. Sablonnière. 1997. Monotone interpolation of order 3 by C2 cubic splines. IMA J. Numer. Anal. 17, 2 (1997), 305–320.
[27]
D. F. McAllister and J. A. Roulier. 1981. Algorithm 574: Shape-preserving osculatory quadratic splines [E1, E2]. ACM Trans. Math. Softw. 7, 3 (1981), 384–386.
[28]
D. F. McAllister and J. A. Roulier. 1981. An algorithm for computing a shape-preserving osculatory quadratic spline. ACM Trans. Math. Softw. 7, 3 (1981), 331–347.
[29]
C. B. Moler. 2008. Numerical Computing with Matlab. The MathWorks Inc., Natick, Massachusetts.
[30]
B. Mulansky and M. Neamtu. 1991. On the Existence of Shape Preserving Interpolation Operators. Ph.D. Dissertation. University of Twente, Vancouver.
[31]
A. R. M. Piah and K. Unsworth. 2011. Improved sufficient conditions for monotonic piecewise rational quartic interpolation. Sains Malays. 40, 10 (2011), 1173–1178.
[32]
S. Pruess. 1993. Shape preserving C2 cubic spline interpolation. IMA J. Numer. Anal. 13, 4 (1993), 493–507.
[33]
A. Quint. 2003. Scalable vector graphics. IEEE Multim. 10, 3 (2003), 99–102.
[34]
J. O. Ramsay. 1988. Monotone regression splines in action. Statist. Sci. 3, 4 (1988), 425–441.
[35]
Larry L. Schumaker. 1983. On shape preserving quadratic spline interpolation. SIAM J. Numer. Anal. 20, 4 (1983), 854–864.
[36]
G. Ulrich and L. T. Watson. 1990. Positivity Conditions for Quartic Polynomials. Technical Report 90-57. Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.
[37]
G. Ulrich and L. T. Watson. 1994. Positivity conditions for quartic polynomials. SIAM J. Sci. Comput. 15, 3 (1994), 528–544.
[38]
Q. Wang and J. Tan. 2004. Rational quartic spline involving shape parameters. J. Inf. Computat. Sci. 1, 1 (2004), 127–130.
[39]
J. Yao and K. E. Nelson. 2018. An unconditionally monotone C2 quartic spline method with nonoscillation derivatives. Adv. Pure Math. 8, 1 (2018), 25–40.
[40]
Y. Zhu and X. Han. 2015. C2 rational quartic interpolation spline with local shape preserving property. Appl. Math. Lett. 46 (2015), 57–63.
[41]
Y. Zhu and X. Han. 2015. Shape preserving C2 rational quartic interpolation spline with two parameters. Int. J. Comput. Math. 92, 10 (2015), 2160–2177.

Cited By

View all
  • (2024)Algorithm 1041: HiPPIS—A High-order Positivity-preserving Mapping Software for Structured MeshesACM Transactions on Mathematical Software10.1145/363229150:1(1-31)Online publication date: 16-Mar-2024
  • (2023)Axion helioscopes as solar thermometersJournal of Cosmology and Astroparticle Physics10.1088/1475-7516/2023/10/0242023:10(024)Online publication date: 6-Oct-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 49, Issue 1
March 2023
250 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/3587918
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 March 2023
Online AM: 01 November 2022
Accepted: 14 September 2022
Revised: 25 August 2022
Received: 22 April 2021
Published in TOMS Volume 49, Issue 1

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Software
  2. quintic spline
  3. interpolation
  4. B-spline
  5. univariate
  6. shape-preserving

Qualifiers

  • Research-article

Funding Sources

  • National Science Foundation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)73
  • Downloads (Last 6 weeks)5
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Algorithm 1041: HiPPIS—A High-order Positivity-preserving Mapping Software for Structured MeshesACM Transactions on Mathematical Software10.1145/363229150:1(1-31)Online publication date: 16-Mar-2024
  • (2023)Axion helioscopes as solar thermometersJournal of Cosmology and Astroparticle Physics10.1088/1475-7516/2023/10/0242023:10(024)Online publication date: 6-Oct-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media