Leveraging User Embeddings and Text to Improve CTR Predictions With Deep Recommender Systems
Abstract
References
Recommendations
User Personality and User Satisfaction with Recommender Systems
In this study, we show that individual users' preferences for the level of diversity, popularity, and serendipity in recommendation lists cannot be inferred from their ratings alone. We demonstrate that we can extract strong signals about individual ...
Acquiring User Information Needs for Recommender Systems
WI-IAT '13: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) - Volume 03Most recommender systems attempt to use collaborative filtering, content-based filtering or hybrid approach to recommend items to new users. Collaborative filtering recommends items to new users based on their similar neighbours, and content-based ...
Investigating serendipity in recommender systems based on real user feedback
SAC '18: Proceedings of the 33rd Annual ACM Symposium on Applied ComputingOver the past several years, research in recommender systems has emphasized the importance of serendipity, but there is still no consensus on the definition of this concept and whether serendipitous items should be recommended is still not a well-...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 851Total Downloads
- Downloads (Last 12 months)188
- Downloads (Last 6 weeks)16
Other Metrics
Citations
View Options
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML FormatLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in