[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3415959.3415995acmotherconferencesArticle/Chapter ViewAbstractPublication PagesrecsysConference Proceedingsconference-collections
research-article
Open access

Leveraging User Embeddings and Text to Improve CTR Predictions With Deep Recommender Systems

Published: 25 September 2020 Publication History

Abstract

Predicting user engagement, often framed as a CTR prediction problem, is important to maximize user satisfaction in social networks. The 2020 Recsys Challenge was sponsored by Twitter and set the goal of predicting four types of user engagement using a dataset with 160 million tweets. Our approach extracted information from the tweet’s text tokens and built optimized user embeddings. We designed our model based on ideas from recommender systems and deep learning that had been successful in CTR prediction tasks. We show that our modifications to existing state-of-the-art architectures and feature engineering improved the model’s ability to predict user engagement. Factored’s team was called Los Trinadores and had the 6th best submission of the challenge with an overall score of 22. The code for our solution is available at https://github.com/factoredai/recsys20-challenge/.

References

[1]
[n.d.]. RecSys Challenge 2020. http://www.recsyschallenge.com/2020/
[2]
Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 265–283. https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
[3]
Luca Belli, Sofia Ira Ktena, Alykhan Tejani, Alexandre Lung-Yut-Fon, Frank Portman, Xiao Zhu, Yuanpu Xie, Akshay Gupta, Michael Bronstein, Amra Delić, Gabriele Sottocornola, Walter Anelli, Nazareno Andrade, Jessie Smith, and Wenzhe Shi. 2020. Privacy-Preserving Recommender Systems Challenge on Twitter’s Home Timeline. arXiv:2004.13715 [cs, stat] (April 2020). http://arxiv.org/abs/2004.13715 arXiv: 2004.13715.
[4]
Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. 2016. Wide & Deep Learning for Recommender Systems. CoRR abs/1606.07792(2016). arxiv:1606.07792http://arxiv.org/abs/1606.07792
[5]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:1810.04805 [cs] (May 2019). http://arxiv.org/abs/1810.04805 arXiv: 1810.04805.
[6]
Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017. DeepFM: A Factorization-Machine based Neural Network for CTR Prediction. arXiv:1703.04247 [cs] (March 2017). http://arxiv.org/abs/1703.04247 arXiv: 1703.04247.
[7]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual Learning for Image Recognition. CoRR abs/1512.03385(2015). arxiv:1512.03385http://arxiv.org/abs/1512.03385
[8]
Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv:1502.03167 [cs] (March 2015). http://arxiv.org/abs/1502.03167 arXiv: 1502.03167.
[9]
Jianxun Lian, Xiaohuan Zhou, Fuzheng Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun. 2018. xDeepFM: Combining Explicit and Implicit Feature Interactions for Recommender Systems. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (July 2018), 1754–1763. https://doi.org/10.1145/3219819.3220023 arXiv: 1803.05170.
[10]
H. Brendan McMahan, Gary Holt, D. Sculley, Michael Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, Daniel Golovin, Sharat Chikkerur, Dan Liu, Martin Wattenberg, Arnar Mar Hrafnkelsson, Tom Boulos, and Jeremy Kubica. 2013. Ad Click Prediction: a View from the Trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD).
[11]
Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, 2019. Pytorch: An imperative style, high-performance deep learning library. In Advances in neural information processing systems. 8026–8037.
[12]
S. Rendle. 2010. Factorization Machines. In 2010 IEEE International Conference on Data Mining. 995–1000.
[13]
Ying Shan, T. Ryan Hoens, Jian Jiao, Haijing Wang, Dong Yu, and JC Mao. 2016. Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA, 255–262. https://doi.org/10.1145/2939672.2939704
[14]
Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang. 2019. AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management (Nov. 2019), 1161–1170. https://doi.org/10.1145/3357384.3357925 arXiv: 1810.11921.
[15]
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All You Need. arXiv:1706.03762 [cs] (Dec. 2017). http://arxiv.org/abs/1706.03762 arXiv: 1706.03762.
[16]
Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language Processing. ArXiv abs/1910.03771(2019).
[17]
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. 2016. Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct. 2016), 56–65. https://doi.org/10.1145/2934664

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Other conferences
RecSysChallenge '20: Proceedings of the Recommender Systems Challenge 2020
September 2020
49 pages
ISBN:9781450388351
DOI:10.1145/3415959
This work is licensed under a Creative Commons Attribution-NoDerivs International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 25 September 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Attention
  2. Deep Learning
  3. Embedding
  4. Factorization Machine
  5. Recommender Systems

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

RecSys Challenge '20

Acceptance Rates

Overall Acceptance Rate 11 of 15 submissions, 73%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 851
    Total Downloads
  • Downloads (Last 12 months)188
  • Downloads (Last 6 weeks)16
Reflects downloads up to 28 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media