[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Public Access

Threesomes, Degenerates, and Love Triangles

Published: 24 April 2018 Publication History

Abstract

The 3SUM problem is to decide, given a set of n real numbers, whether any three sum to zero. It is widely conjectured that a trivial O(n2)-time algorithm is optimal on the Real RAM, and optimal even in the nonuniform linear decision tree model. Over the years the consequences of this conjecture have been revealed. This 3SUM conjecture implies Ω (n2) lower bounds on numerous problems in computational geometry, and a variant of the conjecture for integer inputs implies strong lower bounds on triangle enumeration, dynamic graph algorithms, and string matching data structures.
In this article, we refute the conjecture that 3SUM requires Ω (n2) in the Real RAM and refute more forcefully the conjecture that its complexity is Ω (n2) in the linear decision tree model. In particular, we prove that the decision tree complexity of 3SUM is O(n3/2√ log n) and give two subquadratic 3SUM algorithms, a deterministic one running in O(n2 / (log n/ log log n)2/3) time and a randomized one running in O(n2(log log n)2 / log n) time with high probability. Our results lead directly to improved bounds on the decision tree complexity of k-variate linear degeneracy testing for all odd k≥ 3.
Finally, we give a subcubic algorithm for a generalization of the (min,+)-product over real-valued matrices and apply it to the problem of finding zero-weight triangles in edge-weighted graphs. We give a depth-O(n5/2√ log n) decision tree for this problem, as well as a deterministic algorithm running in time O(n3 (log log n)2/log n).

References

[1]
S. Aaronson and Y. Shi. 2004. Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51, 4 (2004), 595--605.
[2]
A. Abboud, A. Backurs, and V. Vassilevska Williams. 2015. Tight hardness results for LCS and other sequence similarity measures. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS’15). 59--78.
[3]
A. Abboud, F. Grandoni, and V. Vassilevska Williams. 2015. Subcubic equivalences between graph centrality problems, APSP and diameter. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 1681--1697.
[4]
A. Abboud and V. V. Williams. 2014. Popular conjectures imply strong lower bounds for dynamic problems. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS’14). 434--443. Retrieved from
[5]
A. Abboud, V. Vassilevska Williams, and O. Weimann. 2014. Consequences of faster sequence alignment. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP’14). 39--51.
[6]
A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1975. The Design and Analysis of Computer Algorithms. Addison-Wesley, Reading, MA.
[7]
O. Aichholzer, F. Aurenhammer, E. D. Demaine, F. Hurtado, P. Ramos, and J. Urrutia. 2012. On k-convex polygons. Comput. Geom. 45, 3 (2012), 73--87.
[8]
N. Ailon and B. Chazelle. 2005. Lower bounds for linear degeneracy testing. J. ACM 52, 2 (2005), 157--171.
[9]
N. Alon and R. B. Boppana. 1987. The monotone circuit complexity of boolean functions. Combinatorica 7, 1 (1987), 1--22.
[10]
A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. 2014. Consequences of faster sequence alignment. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP’14). 114--125.
[11]
A. Amir, T. Kopelowitz, A. Levy, S. Pettie, E. Porat, and B. R. Shalom. 2016. Mind the gap: Essentially optimal algorithms for online dictionary matching with one gap. In Proceedings of the 27th International Symposium on Algorithms and Computation (ISAAC’16). 12:1--12:12. Retrieved from
[12]
A. Backurs and P. Indyk. 2015. Edit distance cannot be computed in strongly subquadratic time (unless SETH is false). In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15). 51--58.
[13]
I. Baran, E. D. Demaine, and M. Pǎtraşcu. 2008. Subquadratic algorithms for 3SUM. Algorithmica 50, 4 (2008), 584--596.
[14]
L. Barba, J. Cardinal, J. Iacono, S. Langerman, A. Ooms, and N. Solomon. 2017. Subquadratic algorithms for algebraic generalizations of 3SUM. In Proceedings of the 33rd International Symposium on Computational Geometry (SoCG’17). 13:1--13:15. Retrieved from
[15]
G. Barequet and S. Har-Peled. 2001. Polygon containment and translational min-Hausdorff-distance between segment sets are 3SUM-hard. Int. J. Comput. Geometry Appl. 11, 4 (2001), 465--474.
[16]
P. Beame. 1991. A general sequential time-space tradeoff for finding unique elements. SIAM J. Comput. 20, 2 (1991), 270--277. Retrieved from
[17]
C. H. Bennett, E. Bernstein, G. Brassard, and U. V. Vazirani. 1997. Strengths and weaknesses of quantum computing. SIAM J. Comput. 26, 5 (1997), 1510--1523.
[18]
A. Bjorklund, R. Pagh, V. Vassilevska Williams, and U. Zwick. 2014. Listing triangles. In Proceedings of the 41st International Colloquium on Automata, Languages, and Programming (ICALP’14). 223--234.
[19]
M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. 1973. Time bounds for selection. J. Comput. Syst. Sci. 7, 4 (1973), 448--461.
[20]
M. Braverman, Y. K. Ko, and O. Weinstein. 2015. Approximating the best nash equilibrium in n<sup>o(log n)</sup>-time breaks the exponential time hypothesis. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 970--982.
[21]
D. Bremner, T. M. Chan, E. D. Demaine, J. Erickson, F. Hurtado, J. Iacono, S. Langerman, M. Pǎtraşcu, and P. Taslakian. 2014. Necklaces, convolutions, and X + Y. Algorithmica 69 (2014), 294--314.
[22]
K. Bringmann. 2014. Why walking the dog takes time: Fréchet distance has no strongly subquadratic algorithms unless SETH fails. In Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS’14). 661--670.
[23]
K. Bringmann and M. Künnemann. 2015. Quadratic conditional lower bounds for string problems and dynamic time warping. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS’15). 79--97.
[24]
R. C. Buck. 1943. Partition of space. Amer. Math. Monthly 50 (1943), 541--544.
[25]
A. Butman, P. Clifford, R. Clifford, M. Jalsenius, N. Lewenstein, B. Porat, E. Porat, and B. Sach. 2013. Pattern matching under polynomial transformation. SIAM J. Comput. 42, 2 (2013), 611--633.
[26]
C. Calabro, R. Impagliazzo, and R. Paturi. 2009. The complexity of satisfiability of small depth circuits. In Proceedings of the 4th International Workshop on Parameterized and Exact Computation (IWPEC’09). 75--85. Retrieved from
[27]
M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. 2016. Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science (ITCS’16). 261--270. Retrieved from
[28]
T. M. Chan. 2008. All-pairs shortest paths with real weights in O (n<sup>3</sup>/log n) time. Algorithmica 50, 2 (2008), 236--243.
[29]
T. M. Chan. 2015. Speeding up the four russians algorithm by about one more logarithmic factor. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’15). 212--217.
[30]
T. M. Chan. 2018. More logarithmic-factor speedups for 3SUM, (median, +)-convolution, and some geometric 3SUM-hard problems. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’18). 881--897. Retrieved from
[31]
T. M. Chan and M. Lewenstein. 2015. Clustered integer 3SUM via additive combinatorics. In Proceedings of the 47th Annual ACM on Symposium on Theory of Computing (STOC’15). 31--40.
[32]
S. Chechik, D. Larkin, L. Roditty, G. Schoenebeck, R. E. Tarjan, and V. Vassilevska Williams. 2014. Better approximation algorithms for the graph diameter. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’14). 1041--1052.
[33]
K.-Y. Chen, P.-H. Hsu, and K.-M. Chao. 2009. Approximate matching for run-length encoded strings is 3SUM-hard. In Combinatorial Pattern Matching. Lecture Notes in Computer Science, Vol. 5577. Springer, 168--179.
[34]
N. Chiba and T. Nishizeki. 1985. Arboricity and subgraph listing algorithms. SIAM J. Comput. 14, 1 (1985), 210--223.
[35]
R. Duan and S. Pettie. 2010. Connectivity oracles for failure prone graphs. In Proceedings of the 42nd ACM Symposium on Theory of Computing. 465--474.
[36]
R. Duan and S. Pettie. 2017. Connectivity oracles for graphs subject to vertex failures. In Proceedings of the 28th ACM-SIAM Symposium on Discrete Algorithms (SODA’17). 490--509.
[37]
D. P. Dubhashi and A. Panconesi. 2009. Concentration of Measure for the Analysis of Randomized Algorithms. Cambridge University Press.
[38]
H. Edelsbrunner, J. O’Rourke, and R. Seidel. 1986. Constructing arrangements of lines and hyperplanes with applications. SIAM J. Comput. 15, 2 (1986), 341--363.
[39]
J. Erickson. 1999. Bounds for linear satisfiability problems. Chicago J. Theor. Comput. Sci. 1999, 8 (1999).
[40]
M. L. Fredman. 1976. How good is the information theory bound in sorting? Theor. Comput. Sci. 1, 4 (1976), 355--361.
[41]
M. L. Fredman. 1976. New bounds on the complexity of the shortest path problem. SIAM J. Comput. 5, 1 (1976), 83--89.
[42]
M. L. Fredman and M. Saks. 1989. The cell probe complexity of dynamic data structures. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC’89). 345--354.
[43]
A. Freund. 2017. Improved subquadratic 3SUM. Algorithmica 77, 2 (2017), 440--458. Retrieved from
[44]
A. Gajentaan and M. H. Overmars. 1995. On a class of O/(n<sup>2</sup>) problems in computational geometry. Comput. Geom. 5 (1995), 165--185.
[45]
O. Gold and M. Sharir. 2017. Improved bounds for 3SUM, k-SUM, and linear degeneracy. In Proceedings of the 25th Annual European Symposium on Algorithms (ESA’17) (Leibniz International Proceedings in Informatics (LIPIcs)), Kirk Pruhs and Christian Sohler (Eds.), Vol. 87. Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 42:1--42:13. Retrieved from
[46]
A. Grønlund and S. Pettie. 2014. Threesomes, degenerates, and love triangles. In Proceedings of the 55th IEEE Symposium on Foundations of Computer Science (FOCS’14). 621--630.
[47]
J. Hartmanis and R. E. Stearns. 1965. On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117 (1965), 285--306.
[48]
J. Håstad. 1986. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC’86). 6--20.
[49]
M. Henzinger, S. Krinninger, D. Nanongkai, and T. Saranurak. 2015. Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15). 21--30.
[50]
R. Impagliazzo, S. Lovett, R. Paturi, and S. Schneider. 2014. 0-1 integer linear programming with a linear number of constraints. Electron. Colloq. Comput. Complex. (ECCC) 21 (2014), 24.
[51]
R. Impagliazzo and R. Paturi. 2001. On the complexity of k-SAT. J. Comput. Syst. Sci. 62, 2 (2001), 367--375.
[52]
R. Impagliazzo, R. Paturi, and F. Zane. 2001. Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63, 4 (2001), 512--530.
[53]
Z. Jafargholi and E. Viola. 2016. 3SUM, 3XOR, triangles. Algorithmica 74, 1 (2016), 326--343. Retrieved from
[54]
D. Kane, S. Lovett, and S. Moran. 2018. Near-optimal linear decision trees for k-SUM and related problems. In Proceedings of the 50th ACM Symposium on Theory of Computing (STOC’18).
[55]
T. Kopelowitz, S. Pettie, and E. Porat. 2015. Dynamic set intersection. In Proceedings of the 14th International Symposium on Algorithms and Data Structures (WADS’15). 470--481.
[56]
T. Kopelowitz, S. Pettie, and E. Porat. 2016. Higher lower bounds from the 3SUM conjecture. In Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’16). 1272--1287. Retrieved from
[57]
K. G. Larsen. 2012. The cell probe complexity of dynamic range counting. In Proceedings of the 44th Symposium on Theory of Computing Conference (STOC’12). 85--94.
[58]
A. Lincoln, V. Vassilevska Williams, J. R. Wang, and R. R. Williams. 2016. Deterministic time-space trade-offs for k-SUM. In Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP’16). 58:1--58:14. Retrieved from
[59]
S. Meiser. 1993. Point location in arrangements of hyperplanes. Inf. Comput. 106, 2 (1993), 286--303.
[60]
F. Meyer auf der Heide. 1984. A polynomial linear search algorithm for the n-dimensional knapsack problem. J. ACM 31, 3 (1984), 668--676.
[61]
C. St. J. A. Nash-Williams. 1964. Decomposition of finite graphs into forests. J. London Math. Soc. 39 (1964), 12.
[62]
M. Pǎtraşcu and E. Demaine. 2006. Logarithmic lower bounds in the cell-probe model. SIAM J. Comput. 35, 4 (2006), 932--963.
[63]
F. P. Preparata and M. I. Shamos. 1985. Computational Geometry. Springer, New York.
[64]
M. Pǎtraşcu. 2010. Towards polynomial lower bounds for dynamic problems. In Proceedings 42nd ACM Symposium on Theory of Computing (STOC’10). 603--610.
[65]
M. Pǎtraşcu and R. Williams. 2010. On the possibility of faster SAT algorithms. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 1065--1075.
[66]
A. A. Razborov. 1985. Lower bounds for the monotone complexity of some boolean functions. Dokl. Ak. Nauk. USSR 281 (1985), 798--801(in Russian). English translation in Sov. Math. Dokl. 31 (1985): 354--357.
[67]
L. Roditty and V. Vassilevska Williams. 2013. Fast approximation algorithms for the diameter and radius of sparse graphs. In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC’13). 515--524.
[68]
B. Saha. 2015. Language edit distance and maximum likelihood parsing of stochastic grammars: Faster algorithms and connection to fundamental graph problems. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (FOCS’15). 118--135. Retrieved from
[69]
M. A. Soss, J. Erickson, and M. H. Overmars. 2003. Preprocessing chains for fast dihedral rotations is hard or even impossible. Comput. Geom. 26, 3 (2003), 235--246.
[70]
V. Vassilevska Williams and R. Williams. 2010. Subcubic equivalences between path, matrix and triangle problems. In Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS’10). 645--654.
[71]
V. Vassilevska Williams and R. Williams. 2013. Finding, minimizing, and counting weighted subgraphs. SIAM J. Comput. 42, 3 (2013), 831--854.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 65, Issue 4
Distributed Computing, Cryptography, Distributed Computing, Cryptography, Coding Theory, Automata Theory, Complexity Theory, Programming Languages, Algorithms, Invited Paper Foreword and Databases
August 2018
307 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/3208081
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 April 2018
Accepted: 01 February 2018
Revised: 01 September 2017
Received: 01 August 2015
Published in JACM Volume 65, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 3SUM
  2. general position testing
  3. linear degeneracy testing
  4. triangle enumeration

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)193
  • Downloads (Last 6 weeks)11
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Hopcroft’s Problem, Log* Shaving, Two-dimensional Fractional Cascading, and Decision TreesACM Transactions on Algorithms10.1145/359135720:3(1-27)Online publication date: 21-Jun-2024
  • (2024)Improved Algebraic Degeneracy TestingDiscrete & Computational Geometry10.1007/s00454-024-00673-7Online publication date: 25-Jun-2024
  • (2024)k-SUM in the Sparse Regime: Complexity and ApplicationsAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68379-4_10(315-351)Online publication date: 18-Aug-2024
  • (2023)Fredman’s Trick Meets Dominance Product: Fine-Grained Complexity of Unweighted APSP, 3SUM Counting, and MoreProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585237(419-432)Online publication date: 2-Jun-2023
  • (2023)Faster Algorithms for Text-to-Pattern Hamming Distances2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00136(2188-2203)Online publication date: 6-Nov-2023
  • (2023)Searching for Point Locations Using LinesThe College Mathematics Journal10.1080/07468342.2023.226307454:5(423-433)Online publication date: 23-Oct-2023
  • (2023)Time and space efficient collinearity indexingComputational Geometry: Theory and Applications10.1016/j.comgeo.2022.101963110:COnline publication date: 1-Mar-2023
  • (2023)Subquadratic algorithms for some 3Sum-hard geometric problems in the algebraic decision-tree modelComputational Geometry: Theory and Applications10.1016/j.comgeo.2022.101945109:COnline publication date: 1-Feb-2023
  • (2022)Hardness for triangle problems under even more believable hypotheses: reductions from real APSP, real 3SUM, and OVProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520032(1501-1514)Online publication date: 9-Jun-2022
  • (2022)Testing Polynomials for Vanishing on Cartesian Products of Planar Point Sets: Collinearity Testing and Related ProblemsDiscrete & Computational Geometry10.1007/s00454-022-00437-168:4(997-1048)Online publication date: 1-Dec-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media