[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

A bound- and positivity-preserving discontinuous Galerkin method for solving the γ-based model

Published: 18 July 2024 Publication History

Abstract

In this work, a bound- and positivity-preserving quasi-conservative discontinuous Galerkin (DG) method is proposed for the γ-based model of compressible two-medium flows. The contribution of this paper mainly includes three parts. On one hand, the DG method with the extended Harten-Lax-van Leer contact flux is proposed to solve the γ-based model, and satisfies the equilibrium-preserving property which preserves uniform velocity and pressure fields at an isolated material interface. On the other hand, an affine-invariant weighted essentially non-oscillatory (Ai-WENO) limiter is adopted to suppress oscillations near the discontinuities. The limiter with the Ai-WENO reconstruction method to the conservative variables not only is able to maintain the equilibrium property, but also generates sharper results around the locations of shock waves in contrast to that applying to the primitive variables. Last but not least, a flux-based bound- and positivity-preserving limiting strategy is introduced and analyzed, which preserves the physical bounds for auxiliary variables in the non-conservative governing equations, and the positivity for density and internal energy. Extensive numerical experiments in both one and two space dimensions show that the proposed method performs well in simulating compressible two-medium flows with high-order accuracy, equilibrium-preserving and bound-preserving properties.

References

[1]
R. Abgrall, How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys. 125 (1996) 150–160.
[2]
R. Abgrall, S. Karni, Computations of compressible multifluids, J. Comput. Phys. 169 (2001) 594.
[3]
R. Abgrall, P. Rai, F. Renac, A discontinuous Galerkin spectral element method for a nonconservative compressible multicomponent flow model, J. Comput. Phys. 472 (2023).
[4]
G. Allaire, S. Clerc, S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys. 181 (2002) 577–616.
[5]
D. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng. 99 (2) (1992) 235–394.
[6]
D. Boe, K. Shahbazi, A positivity preserving high-order finite difference method for compressible two-fluid flows, Numer. Methods Partial Differ. Equ. (2023) 1–39.
[7]
W. Boscheri, M. Dumbser, A direct arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D, J. Comput. Phys. 275 (2014) 484–523.
[8]
W. Boscheri, M. Dumbser, R. Loubère, Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity, Comput. Fluids 134 (2016) 111–129.
[9]
J. Cheng, F. Zhang, A bound-preserving and positivity-preserving path-conservative discontinuous Galerkin method for solving five-equation model of compressible two-medium flows, SIAM J. Sci. Comput. 44 (4) (2022) B1195–B1220.
[10]
J. Cheng, F. Zhang, T. Liu, A discontinuous Galerkin method for the simulation of compressible gas-gas and gas-water two-medium flows, J. Comput. Phys. 403 (2020).
[11]
J. Cheng, F. Zhang, T. Liu, A quasi-conservative discontinuous Galerkin method for solving five equation model of compressible two-medium flows, J. Sci. Comput. 85 (12) (2020).
[12]
B. Cockburn, C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput. 52 (1989) 411–435.
[13]
B. Cockburn, C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J. Sci. Comput. 16 (2001) 173–261.
[14]
V. Coralic, T. Colonius, Finite-volume WENO scheme for viscous compressible multicomponent flows, J. Comput. Phys. 274 (2014) 95–121.
[15]
X. Deng, S. Inaba, B. Xie, K.-M. Shyue, F. Xiao, High fidelity discontinuity-resolving reconstruction for compressible multiphase flows with moving interfaces, J. Comput. Phys. 371 (2018) 945–966.
[16]
W. Don, R. Li, B.-S. Wang, Y. Wang, A novel and robust scale-invariant WENO scheme for hyperbolic conservation laws, J. Comput. Phys. 448 (2022).
[17]
J. Glimm, X. Li, Y. Liu, Z. Xu, N. Zhao, Conservative front tracking with improved accuracy, SIAM J. Numer. Anal. 41 (5) (2003) 1926–1947.
[18]
Y. Gu, Z. Gao, G. Hu, P. Li, L. Wang, High order finite difference alternative WENO scheme for multi-component flows, J. Sci. Comput. 89 (2021) 52.
[19]
M. Henry de Frahan, S. Varadan, E. Johnsen, A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys. 280 (2015) 489–509.
[20]
L. Huang, Z. Jiang, X. Qin, X. Zhang, C. Yan, High-order positivity-preserving method in the flux reconstruction framework for the simulation of two-medium flow, J. Comput. Phys. 486 (2023).
[21]
S. Jain, A. Mani, P. Moin, A conservative diffuse-interface method for compressible two-phase flows, J. Comput. Phys. 418 (2020).
[22]
Z. Jia, S. Zhang, A new high-order discontinuous Galerkin spectral finite element method for Lagrangian gas dynamics in two-dimensions, J. Comput. Phys. 230 (7) (2011) 2496–2522.
[23]
G. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228.
[24]
E. Johnsen, On the treatment of contact discontinuities using WENO schemes, J. Comput. Phys. 230 (2011) 8665–8668.
[25]
E. Johnsen, T. Colonius, Implementation of WENO schemes in compressible multi-component flow problems, J. Comput. Phys. 231 (2006) 715–732.
[26]
E. Johnsen, F. Ham, Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J. Comput. Phys. 231 (2012) 5705–5717.
[27]
E. Johnsen, J. Larsson, A. Bhagatwala, W. Cabot, P. Moin, B. Olson, P. Rawat, S. Shankar, B. Sjogreen, H. Yee, X. Zhong, S. Lele, Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, J. Comput. Phys. 229 (2010) 1213–1237.
[28]
A. Kapila, R. Menikoff, J. Bdzil, S. Son, D. Stewart, Two-phase modeling of deflagration-to-detonation transition in granular materials: reduced equations, Phys. Fluids 13 (10) (2001) 3002–3024.
[29]
S. Karni, Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys. 112 (1994) 31.
[30]
S. Kokh, F. Lagoutière, An anti-diffusive numerical scheme for the simulation of interfaces between compressible fluids by means of five-equation model, J. Comput. Phys. 229 (2010) 2773–2809.
[31]
P. Li, T. Li, W. Don, B.-S. Wang, Scale-invariant multi-resolution alternative WENO scheme for the Euler equations, J. Sci. Comput. 251 (2022).
[32]
Z. Li, X. Yu, Z. Jia, The cell-centered discontinuous Galerkin method for Lagrangian compressible Euler equations in two-dimensions, Comput. Fluids 96 (2014) 152–164.
[33]
T. Liu, B. Khoo, C. Wang, The ghost fluid method for compressible gas-water simulation, J. Comput. Phys. 204 (2005) 193–221.
[34]
T. Liu, B. Khoo, K. Yeo, Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys. 190 (2003) 651–681.
[35]
H. Lu, J. Zhu, D. Wang, N. Zhao, Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow, Comput. Fluids 126 (2016) 1–11.
[36]
D. Luo, S. Li, W. Huang, J. Qiu, Y. Chen, A quasi-conservative discontinuous Galerkin method for multi-component flows using the non-oscillatory kinetic flux II: ALE framework, J. Sci. Comput. 90 (2022) 46.
[37]
D. Luo, J. Qiu, J. Zhu, Y. Chen, A quasi-conservative discontinuous Galerkin method for multi-component flows using the non-oscillatory kinetic flux, J. Sci. Comput. 87 (2021) 96.
[38]
P. Maire, A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes, J. Comput. Phys. 228 (7) (2009) 2391–2425.
[39]
P. Maire, R. Abgrall, J. Breil, J. Ovadia, A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J. Sci. Comput. 29 (4) (2007) 1781–1824.
[40]
T. Nonomura, S. Morizawa, H. Terashima, S. Obayashi, K. Fujii, Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: weighted compact nonlinear scheme, J. Comput. Phys. 231 (2012) 3181–3210.
[41]
A. Pandare, H. Luo, A robust and efficient finite volume method for compressible inviscid and viscous two-phase flows, J. Comput. Phys. 371 (2018) 67–91.
[42]
M. Pelanti, K. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves, J. Comput. Phys. 259 (2014) 331–357.
[43]
J. Qiu, C.-W. Shu, Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput. 26 (2005) 907–929.
[44]
R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows, J. Comput. Phys. 150 (2) (1999) 425–467.
[45]
R. Saurel, R. Abgrall, A simple method for compressible multifluid flows, SIAM J. Sci. Comput. 21 (3) (1999) 1115–1145.
[46]
K. Shahbazi, High-order finite difference scheme for compressible multi-component flow computations, Comput. Fluids 190 (2019) 425–439.
[47]
C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes, J. Comput. Phys. 77 (1988) 439–471.
[48]
B. Swartz, B. Wendroff, AZTEC: a front tracking code based on Godunov's method, Appl. Numer. Math. 2 (3) (1986) 385–397.
[49]
E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, 3rd edition, Springer, Berlin, Heidelberg, 2009.
[50]
B.-S. Wang, W.S. Don, Affine-invariant WENO weights and operator, Appl. Numer. Math. 181 (2022) 630–646.
[51]
C. Wang, T. Liu, C.-W. Shu, A real ghost fluid method for the simulation of multimedium compressible flow, SIAM J. Sci. Comput. 28 (2006) 278–302.
[52]
C. Wang, C.-W. Shu, An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method, J. Comput. Phys. 229 (2010) 8823–8843.
[53]
Y. Wang, W.S. Don, B.-S. Wang, Fifth order AWENO finite difference scheme with adaptive numerical diffusion for Euler equations, Comput. Fluids 251 (2023).
[54]
M. Wong, J. Angel, M. Barad, C. Kiris, A positivity-preserving high-order weighted compact nonlinear scheme for compressible gas-liquid flows, J. Comput. Phys. 444 (2021).
[55]
P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys. 54 (1) (1984) 115–173.
[56]
L. Xu, W. Yang, T. Liu, An interface treatment for two-material multi-species flows involving thermally perfect gases with chemical reactions, J. Comput. Phys. 448 (2022).
[57]
X. Zhang, On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier-Stokes equations, J. Comput. Phys. 328 (2017) 301–343.
[58]
F. Zheng, C.-W. Shu, J. Qiu, A high order conservative finite difference scheme for compressible two-medium flows, J. Comput. Phys. 445 (2021).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 509, Issue C
Jul 2024
579 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 18 July 2024

Author Tags

  1. Discontinuous Galerkin method
  2. γ-based model
  3. Bound-preserving
  4. Positivity-preserving

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media