[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Low-rank Monte Carlo for Smoluchowski-class equations

Published: 17 July 2024 Publication History

Abstract

The work discusses a new low-rank Monte Carlo technique to solve Smoluchowski-like kinetic equations. It drastically decreases the computational complexity of modeling of size-polydisperse systems. For the studied systems it can outperform the existing methods by more than ten times; its superiority further grows with increasing system size. Application to the recently developed temperature-dependent Smoluchowski equations is also demonstrated.

Highlights

Low-rank approximation accelerates Monte Carlo simulations.
Segment trees are used to quickly select particle pairs.
Applicable to classical and temperature-dependent Smoluchowski equations.

References

[1]
S. Matveev, E. Tyrtyshnikov, A. Smirnov, N. Brilliantov, A fast numerical method for solving the Smoluchowski-type kinetic equations of aggregation and fragmentation processes, Vychisl. Method Progr. 15 (1) (2014) 1–8.
[2]
S. Matveev, N. Ampilogova, V. Stadnichuk, E. Tyrtyshnikov, A. Smirnov, N. Brilliantov, Anderson acceleration method of finding steady-state particle size distribution for a wide class of aggregation- fragmentation models, Comput. Phys. Commun. 224 (2018) 154–163,.
[3]
A. Osinsky, Low-rank method for fast solution of generalized Smoluchowski equations, J. Comput. Phys. 422 (2020),.
[4]
G. Carnevale, Y. Pomeau, W. Young, Statistics of ballistic agglomeration, Phys. Rev. Lett. 64 (1990) 2913,.
[5]
E. Trizac, P. Krapivsky, Correlations in ballistic processes, Phys. Rev. Lett. 91 (2003),.
[6]
S. Paul, S. Das, Dimension dependence of clustering dynamics in models of ballistic aggregation and freely cooling granular gas, Phys. Rev. E 97 (2018).
[7]
F. Lai, S. Friedlander, J. Pich, G. Hidy, The self-preserving particle size distribution for brownian coagulation in the free-molecule regime, J. Colloid Interface Sci. 39 (2) (1972) 395–405,.
[8]
M. Thorn, M. Seesselberg, Dynamic scaling in colloidal aggregation: comparison of experimental data with results of a stochastic simulation, Phys. Rev. Lett. 72 (1994) 3622,.
[9]
G. Odriozola, R. Leone, A. Schmitt, J. Callejas-Fernández, R. Martínez-García, R. Hidalgo-Álvarez, Irreversible versus reversible aggregation: mean field theory and experiments, J. Chem. Phys. 121 (11) (2004) 5468,.
[10]
P. van Dongen, M. Ernst, Dynamic scaling in the kinetics of clustering, Phys. Rev. Lett. 54 (1985) 1396–1399,.
[11]
G. Kotalczyk, F. Kruis, A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging, J. Comput. Phys. 340 (2017) 276–296,.
[12]
K. Sabelfeld, G. Eremeev, A hybrid kinetic-thermodynamic Monte Carlo model for simulation of homogeneous burst nucleation, Monte Carlo Methods Appl. 24 (3) (2018) 193–202,.
[13]
J. Wei, A Monte Carlo simulation for particle aggregation containing a sol–gel phase transition, J. Sol-Gel Sci. Technol. 78 (2016) 270–278,.
[14]
G. Kotalczyk, F. Kruis, Fractional Monte Carlo time steps for the simulation of coagulation for parallelized flowsheet simulations, Chem. Eng. Res. Des. 136 (2018) 71–82,.
[15]
D. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22 (4) (1976) 403–434,.
[16]
A. Garcia, L. Alejandro, C. van den Broeck, M. Aertsens, R. Serneels, A Monte Carlo simulation of coagulation, Phys. A, Stat. Mech. Appl. 143 (3) (1987) 535–546,.
[17]
P. Meakin, The Growth of Fractal Aggregates, Time-Dependent Events in, Disordered Materials, vol. 167, 1987, p. 45,.
[18]
H. Zhao, A. Maisels, T. Matsoukas, C. Zheng, Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems, Powder Technol. 173 (1) (2007) 38–50,.
[19]
J. Wei, Comparison of computational efficiency of inverse and acceptance–rejection scheme by Monte Carlo methods for particle coagulation on CPU and GPU, Powder Technol. 268 (2014) 420–423,.
[20]
J. Wei, F. Kruis, GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method, J. Comput. Phys. 249 (2013) 67–79,.
[21]
E. Debry, B. Sportisse, B. Jourdain, A stochastic approach for the numerical simulation of the general dynamics equation for aerosols, J. Comput. Phys. 184 (2) (2003) 649–669,.
[22]
N. Brilliantov, A. Formella, T. Pöschel, Increasing temperature of cooling granular gases, Nat. Commun. 9 (2018) 797,.
[23]
A. Bodrova, A. Osinsky, N. Brilliantov, Temperature distribution in driven granular mixtures does not depend on mechanism of energy dissipation, Sci. Rep. 10 (2020) 693,.
[24]
A. Osinsky, N. Brilliantov, Anomalous aggregation regimes of temperature-dependent Smoluchowski equations, Phys. Rev. E 105 (3) (2022),.
[25]
A. Osinsky, N. Brilliantov, Exact solutions of temperature-dependent smoluchowski equations, J. Phys. A, Math. Theor. 55 (42) (2022),.
[26]
P. Krapivsky, S. Redner, E. Ben-Naim, Kinetic View of Statistical Physics, Cambridge Univ. Press, Cambridge, 2010,.
[27]
A. Berrones-Santos, L. Benavides-Vázquez, E. Schaeffer, J. Almaguer, Fragmentation instability in aggregating systems, Phys. A, Stat. Mech. Appl. 594 (2022),.
[28]
A. Kalinov, A. Osinsky, S. Matveev, W. Otieno, N. Brilliantov, Direct simulation monte carlo for new regimes in aggregation-fragmentation kinetics, J. Comput. Phys. 467 (2021),.
[29]
F. Kruis, A. Maisels, H. Fissan, Direct simulation Monte Carlo method for particle coagulation and aggregation, AIChE J. 46 (9) (2000) 1735–1742,.
[30]
K. Liffman, A direct simulation Monte-Carlo method for cluster coagulation, J. Comput. Phys. 100 (1992) 116–127,.
[31]
F. Leyvraz, Scaling theory and exactly solved models in the kinetics of irreversible aggregation, Phys. Rep. 383 (2–3) (2003) 95–212,.
[32]
H. Zhao, C. Zheng, M. Xu, Multi-Monte Carlo method for general dynamic equation considering particle coagulation, Appl. Math. Mech. 26 (2005) 953–962,.
[33]
M. Smith, T. Matsoukas, Constant-number Monte Carlo simulation of population balances, Chem. Eng. Sci. 53 (9) (1998) 1777–1786,.
[34]
R. Zagidullin, A. Smirnov, S. Matveev, N. Brilliantov, P. Krapivsky, Aggregation in non-uniform systems with advection and localized source, J. Phys. A, Math. Theor. 55 (26) (2022),.
[35]
E.E. Tyrtyshnikov, Mosaic-skeleton approximations, Calcolo 33 (1996) 47–57,.
[36]
S. Börm, Construction of data-sparse H 2-matrices by hierarchical compression, SIAM J. Sci. Comput. 31 (3) (2009) 1820–1839,.
[37]
A. Kolodko, W. Wolfgang Wagner, Convergence of a nanbu type method for the smoluchowski equation, Monte Carlo Methods Appl. 3 (4) (1997) 255–274,.
[38]
N. Brilliantov, P. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, J. Schmidt, Size distribution of particles in saturn's rings from aggregation and fragmentation, Proc. Natl. Acad. Sci. 112 (31) (2015) 9536–9541,.
[39]
V. Garzó, J. Dufty, Homogeneous cooling state for a granular mixture, Phys. Rev. E 60 (1999) 5706–5713,.
[40]
H. Uecker, W. Kranz, T. Aspelmeier, A. Zippelius, Partitioning of energy in highly polydisperse granular gases, Phys. Rev. E 80 (2009),.
[41]
A. Bodrova, D. Levchenko, N. Brilliantov, Universality of temperature distribution in granular gas mixtures with a steep particle size distribution, Europhys. Lett. 106 (1) (2014),.
[42]
F. Spahn, N. Albers, M. Sremcevic, C. Thornton, Kinetic description of coagulation and fragmentation in dilute granular particle ensembles, Europhys. Lett. 67 (2004) 545–551,.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computational Physics
Journal of Computational Physics  Volume 506, Issue C
Jun 2024
654 pages

Publisher

Academic Press Professional, Inc.

United States

Publication History

Published: 17 July 2024

Author Tags

  1. Smoluchowski equations
  2. Monte Carlo simulation of aggregation
  3. Low-rank approximation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media