[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Deterministic rendezvous with different maps

Published: 01 December 2019 Publication History

Abstract

We consider a rendezvous problem in which two identical anonymous mobile entities A and B, called later robots, are asked to meet at some node in the network modelled by an arbitrary undirected graph G = ( V, E ). Most of the work devoted to rendezvous in graphs assumes robots have access to the same sets of nodes and edges, and the topology of connections is either known or unknown to the robots. In this work we assume that each robot may access only specific nodes and edges in G of which full map is given to the robot in advance. We consider three variants of rendezvous differentiated by the level of restricted maneuverability of robots in both synchronous and asynchronous models of computation. In each adopted variant and model of computation we study feasibility of rendezvous, and if rendezvous is possible we propose the relevant algorithms and discuss their efficiency.

References

[1]
C. Agathangelou, C. Georgiou, M. Mavronicolas, A distributed algorithm for gathering many fat mobile robots in the plane, in: Proc. PODC 2013, 2013, pp. 250–259.
[2]
N. Agmon, D. Peleg, Fault-tolerant gathering algorithms for autonomous mobile robots, SIAM J. Comput. 36 (2006) 56–82.
[3]
S. Alpern, The rendezvous search problem, SIAM J. Control Optim. 33 (1995) 673–683.
[4]
S. Alpern, Rendezvous search on labeled networks, Nav. Res. Logist. 49 (2002) 256–274.
[5]
S. Alpern, R. Fokkink, L. Gąsieniec, R. Lindelauf, V.S. Subrahmanian, Search Theory, Springer, 2013.
[6]
S. Alpern, S. Gal, The Theory of Search Games and Rendezvous, Kluwer Academic Publisher, 2002.
[7]
E. Anderson, S. Fekete, Asymmetric rendezvous on the plane, in: Proc. Symp. on Computational Geometry, 1998, pp. 365–373.
[8]
E. Anderson, S. Fekete, Two-dimensional rendezvous search, Oper. Res. 49 (1) (2001) 107–118.
[9]
E. Anderson, R. Weber, The rendezvous problem on discrete locations, J. Appl. Probab. 28 (1990) 839–851.
[10]
V. Baston, S. Gal, Rendezvous on the line when the players' initial distance is given by an unknown probability distribution, SIAM J. Control Optim. 36 (1998) 1880–1889.
[11]
V. Baston, S. Gal, Rendezvous search when marks are left at the starting points, Nav. Res. Logist. 48 (2001) 722–731.
[12]
S. Chen, A. Russell, A. Samanta, R. Sundaram, Deterministic blind rendezvous in cognitive radio networks, in: Proc. ICDCS 2014, 2014, pp. 358–367.
[13]
A. Collins, J. Czyżowicz, L. Gąsieniec, A. Labourel, Tell me where I am so I can meet you sooner, in: Proc. ICALP 2010, 2010, pp. 502–514.
[14]
A. Collins, J. Czyżowicz, L. Gąsieniec, A. Kosowski, R.A. Martin, Synchronous rendezvous for location-aware agents, in: Proc. DISC 2011, 2011, pp. 447–459.
[15]
J. Czyżowicz, L. Gąsieniec, A. Pelc, Gathering few fat mobile robots in the plane, Theor. Comput. Sci. 410 (6–7) (2009) 481–499.
[16]
J. Czyżowicz, A. Kosowski, A. Pelc, How to meet when you forget: log-space rendezvous in arbitrary graphs, Distrib. Comput. 25 (2012) 165–178.
[17]
J. Czyżowicz, A. Labourel, A. Pelc, How to meet asynchronously (almost) everywhere, ACM Trans. Algorithms 8 (2012).
[18]
G. D'Angelo, G. Di Stefano, A. Navarra, Gathering on rings under the look-compute-move model, Distrib. Comput. 27 (4) (2014) 255–285.
[19]
G. D'Angelo, G. Di Stefano, R. Klasing, A. Navarra, Gathering of robots on anonymous grids and trees without multiplicity detection, Theor. Comput. Sci. 610 (2016) 158–168.
[20]
S. Das, D. Dereniowski, A. Kosowski, P. Uznanski, Rendezvous of distance-aware mobile agents in unknown graphs, in: Proc. SIROCCO 2014, 2014, pp. 295–310.
[21]
S. Das, F.L. Luccio, E. Markou, Mobile agents rendezvous in spite of a malicious agent, in: Proc. ALGOSENSORS 2015, 2015, pp. 211–224.
[22]
B. Degener, B. Kempkes, F. Meyer auf der Heide, A local O ( n 2 ) gathering algorithm, in: Proc. SPAA 2010, 2010, pp. 217–223.
[23]
D. Dereniowski, R. Klasing, A. Kosowski, Ł. Kuszner, Rendezvous of heterogeneous mobile agents in edge-weighted networks, Theor. Comput. Sci. 608 (2015) 219–230.
[24]
Y. Dieudonné, A. Pelc, D. Peleg, Gathering despite mischief, ACM Trans. Algorithms 11 (1) (2014) 1–28.
[25]
G. Di Stefano, A. Navarra, Gathering of oblivious robots on infinite grids with minimum traveled distance, Inf. Comput. 254 (2017) 377–391.
[26]
G. Di Stefano, A. Navarra, Optimal gathering of oblivious robots in anonymous graphs and its application on trees and rings, Distrib. Comput. 30 (2) (2017) 75–86.
[27]
S. Elouasbi, A. Pelc, Deterministic rendezvous with detection using beeps, in: Proc. ALGOSENSORS 2015, 2015, pp. 85–97.
[28]
S. Elouasbi, A. Pelc, Deterministic meeting of sniffing agents in the plane, in: Proc. SIROCCO 2016, 2016, pp. 212–227.
[29]
A. Farrugia, L. Gąsieniec ŁKuszner, E. Pacheco, Deterministic rendezvous in restricted graphs, in: Proc. SOFSEM 2015, 2015, pp. 189–200.
[30]
O. Feinerman, A. Korman, S. Kutten, Y. Rodeh, Fast rendezvous on a cycle by agents with different speeds, in: ICDCN, in: LNCS, vol. 8314, 2014, pp. 1–13.
[31]
T. Izumi, S. Souissi, Y. Katayama, N. Inuzuka, X. Défago, K. Wada, M. Yamashita, The gathering problem for two oblivious robots with unreliable compasses, SIAM J. Comput. 41 (1) (2012) 26–46.
[32]
B. Katreniak, Convergence with limited visibility by asynchronous mobile robots, in: Proc. SIROCCO 2011, 2011, pp. 125–137.
[33]
D. Kowalski, A. Malinowski, How to meet in anonymous network, Theor. Comput. Sci. 399 (2008) 141–156.
[34]
E. Kranakis, D. Krizanc, S. Rajsbaum, Mobile agent rendezvous: a survey, in: Proc. SIROCCO 2006, 2006, pp. 1–9.
[35]
Z. Lin, H. Liu, X. Chu, Y-W. Leung, Jump-stay based channel-hopping algorithm with guaranteed rendezvous for cognitive radio networks, in: Proc. INFOCOM 2011, 2011, pp. 2444–2452.
[36]
A. Miller, A. Pelc, Tradeoffs between cost and information for rendezvous and treasure hunt, J. Parallel Distrib. Comput. 83 (2015) 159–167.
[37]
A. Miller, A. Pelc, Time versus cost tradeoffs for deterministic rendezvous in networks, Distrib. Comput. 29 (1) (2016) 51–64.
[38]
A. Pelc, Deterministic rendezvous in networks: a comprehensive survey, Networks 59 (2012) 331–347.
[39]
Y. Yamauchi, T. Izumi, S. Kamei, Mobile agent rendezvous on a probabilistic edge evolving ring, in: Proc. ICNC 2012, 2012, pp. 103–112.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Computer and System Sciences
Journal of Computer and System Sciences  Volume 106, Issue C
Dec 2019
145 pages

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 December 2019

Author Tags

  1. Distributed algorithm
  2. Mobile agents
  3. Rendezvous

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media