Improving topic disentanglement via contrastive learning
References
Index Terms
- Improving topic disentanglement via contrastive learning
Recommendations
Topic-driven reader comments summarization
CIKM '12: Proceedings of the 21st ACM international conference on Information and knowledge managementReaders of a news article often read its comments contributed by other readers. By reading comments, readers obtain not only complementary information about this news article but also the opinions from other readers. However, the existing ranking ...
Topic sentiment change analysis
MLDM'11: Proceedings of the 7th international conference on Machine learning and data mining in pattern recognitionPublic opinions on a topic may change over time. Topic Sentiment change analysis is a new research problem consisting of two main components: (a) mining opinions on a certain topic, and (b) detect significant changes of sentiment of the opinions on the ...
Research on Multi-document Summarization Based on LDA Topic Model
IHMSC '14: Proceedings of the 2014 Sixth International Conference on Intelligent Human-Machine Systems and Cybernetics - Volume 02Compared with VSM (Vector Space Model) and graph-ranking models, LDA (Latent Dirichlet Allocation) Model can discover latent topics in the corpus and latent topics are beneficial to use sentence-ranking mechanisms to form a good summary. In the paper, ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Pergamon Press, Inc.
United States
Publication History
Author Tags
Qualifiers
- Research-article
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 0Total Downloads
- Downloads (Last 12 months)0
- Downloads (Last 6 weeks)0