[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Non-negative subspace feature representation for few-shot learning in medical imaging

Published: 01 December 2024 Publication History

Abstract

Unlike typical visual scene recognition tasks, where massive datasets are available to train deep neural networks (DNNs), medical image diagnosis using DNNs often faces challenges due to data scarcity. In this paper, we investigate the effectiveness of data-based few-shot learning in medical imaging by exploring different data attribute representations in a low-dimensional space. We introduce different types of non-negative matrix factorization (NMF) in few-shot learning to investigate the information preserved in the subspace resulting from dimensionality reduction, which is crucial to mitigate the data scarcity problem in medical image classification. Extensive empirical studies are conducted in terms of validating the effectiveness of NMF, especially its supervised variants (e.g., discriminative NMF, and supervised and constrained NMF with sparseness), and the comparison with principal component analysis (PCA), i.e., the collaborative representation-based dimensionality reduction technique derived from eigenvectors. With 14 different datasets covering 11 distinct illness categories, thorough experimental results and comparison with related techniques demonstrate that NMF is a competitive alternative to PCA for few-shot learning in medical imaging, and the supervised NMF algorithms are more discriminative in the subspace with greater effectiveness. Furthermore, we show that the part-based representation of NMF, especially its supervised variants, is dramatically impactful in detecting lesion areas in medical imaging with limited samples.

Highlights

Revealed SVD drawbacks in medical imaging feature representation for data scarcity.
Proposed NMF and its variations as a viable alternative to SVD in such scenarios.
Explored NMF and supervised NMF in the subspace-based few-shot learning framework.
Experimental validation on 14 medical datasets across 11 illnesses with varied sizes.
Experimental results demonstrate the great performance of the proposed method.

References

[1]
Haq M.A., Khan I., Ahmed A., Eldin S.M., Alshehri A., Ghamry N.A., DCNNBT: A novel deep convolution neural network-based brain tumor classification model, Fractals 31 (06) (2023).
[2]
Kumar K.K., Dinesh P., Rayavel P., Vijayaraja L., Dhanasekar R., Kesavan R., Raju K., Khan A.A., Wechtaisong C., Haq M.A., et al., Brain tumor identification using data augmentation and transfer learning approach, Comput. Syst. Sci. Eng. 46 (2) (2023).
[3]
Yousef R., Khan S., Gupta G., Siddiqui T., Albahlal B.M., Alajlan S.A., Haq M.A., U-Net-based models towards optimal MR brain image segmentation, Diagnostics 13 (9) (2023) 1624.
[4]
Ansar S.A., Aggarwal S., Arya S., Haq M.A., Mittal V., Gared F., An intuitionistic approach for the predictability of anti-angiogenic inhibitors in cancer diagnosis, Sci. Rep. 13 (1) (2023) 7051.
[5]
Santosh Kumar B., Haq M.A., Sreenivasulu P., Siva D., Alazzam M.B., Alassery F., Karupusamy S., Fine-tuned convolutional neural network for different cardiac view classification, J. Supercomput. 78 (16) (2022) 18318–18335.
[6]
Adimoolam M., Maithili K., Balamurugan N., Rajkumar R., Leelavathy S., Kannadasan R., Haq M.A., Khan I., Tag El Din E.M., Khan A.A., Extended deep learning algorithm for improved brain tumor diagnosis system, Intell. Autom. Soft Comput. 39 (1) (2024).
[7]
Özçelik Y.B., Altan A., Classification of diabetic retinopathy by machine learning algorithm using entorpy-based features, in: Proceedings of the ÇAnkaya International Congress on Scientific Research, IKSAD Golbasi, Adiyaman Province, Turkey, 2023, pp. 10–12.
[8]
Özçelik Y.B., Altan A., Overcoming nonlinear dynamics in diabetic retinopathy classification: A robust AI-based model with chaotic swarm intelligence optimization and recurrent long short-term memory, Fractal Fract. 7 (8) (2023) 598.
[9]
Remeseiro B., Bolon-Canedo V., A review of feature selection methods in medical applications, Comput. Biol. Med. 112 (2019).
[10]
Di Biasi L., De Marco F., Auriemma Citarella A., Castrillón-Santana M., Barra P., Tortora G., Refactoring and performance analysis of the main CNN architectures: using false negative rate minimization to solve the clinical images melanoma detection problem, BMC Bioinform. 24 (1) (2023) 386.
[11]
Kaplan J., McCandlish S., Henighan T.J., Brown T.B., Chess B., Child R., Gray S., Radford A., Wu J., Amodei D., Scaling laws for neural language models, 2020, ArXiv, arXiv:2001.08361.
[12]
Hong D., Zhang B., Li X., Li Y., Li C., Yao J., Yokoya N., Li H., Ghamisi P., Jia X., et al., SpectralGPT: Spectral remote sensing foundation model, IEEE Trans. Pattern Anal. Mach. Intell. (2024).
[13]
Li C., Zhang B., Hong D., Zhou J., Vivone G., Li S., Chanussot J., CasFormer: Cascaded transformers for fusion-aware computational hyperspectral imaging, Inf. Fusion 108 (2024).
[14]
Hong D., Zhang B., Li H., Li Y., Yao J., Li C., Werner M., Chanussot J., Zipf A., Zhu X.X., Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks, Remote Sens. Environ. 299 (2023).
[15]
Hong D., Yao J., Li C., Meng D., Yokoya N., Chanussot J., Decoupled-and-coupled networks: Self-supervised hyperspectral image super-resolution with subpixel fusion, IEEE Trans. Geosci. Remote Sens. (2023).
[16]
Razzak M.I., Naz S., Zaib A., Deep learning for medical image processing: Overview, challenges and the future, Classif. BioApps (2018) 323–350.
[17]
Babayan A., Erbey M., Kumral D., Reinelt J.D., Reiter A.M., Röbbig J., Schaare H.L., Uhlig M., Anwander A., Bazin P.-L., et al., A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral physiology in young and old adults, Sci. Data 6 (1) (2019) 1–21.
[18]
Yan K., Wang X., Lu L., Summers R.M., Deeplesion: Automated deep mining, categorization and detection of significant radiology image findings using large-scale clinical lesion annotations, 2017, arXiv preprint arXiv:1710.01766.
[19]
Castro D.C., Walker I., Glocker B., Causality matters in medical imaging, Nature Commun. 11 (1) (2020) 1–10.
[20]
Laves M.-H., Ihler S., Fast J.F., Kahrs L.A., Ortmaier T., Well-calibrated regression uncertainty in medical imaging with deep learning, in: Medical Imaging with Deep Learning, PMLR, 2020, pp. 393–412.
[21]
Weiss K., Khoshgoftaar T.M., Wang D., A survey of transfer learning, J. Big Data 3 (1) (2016) 1–40.
[22]
Raghu M., Zhang C., Kleinberg J., Bengio S., Transfusion: Understanding transfer learning for medical imaging, Adv. Neural Inf. Process. Syst. 32 (2019).
[23]
Wang J., Du X., Farrahi K., Niranjan M., Deep cascade learning for optimal medical image feature representation, Mach. Learn. Healthc. (MLHC) (2022).
[24]
Shorten C., Khoshgoftaar T.M., A survey on image data augmentation for deep learning, J. Big Data 6 (1) (2019) 1–48.
[25]
Wang Y., Yao Q., Kwok J.T., Ni L.M., Generalizing from a few examples: A survey on few-shot learning, ACM Comput. Surv. 53 (3) (2020) 1–34.
[26]
Nichol A., Schulman J., Reptile: a scalable metalearning algorithm, 2018, p. 4. arXiv preprint arXiv:1803.02999, vol. 2, no. 3.
[27]
Finn C., Abbeel P., Levine S., Model-agnostic meta-learning for fast adaptation of deep networks, in: International Conference on Machine Learning, PMLR, 2017, pp. 1126–1135.
[28]
Snell J., Swersky K., Zemel R., Prototypical networks for few-shot learning, Adv. Neural Inf. Process. Syst. 30 (2017).
[29]
Vinyals O., Blundell C., Lillicrap T., Wierstra D., et al., Matching networks for one shot learning, Adv. Neural Inf. Process. Syst. 29 (2016).
[30]
Xu J., An W., Zhang L., Zhang D., Sparse, collaborative, or nonnegative representation: which helps pattern classification?, Pattern Recognit. 88 (2019) 679–688.
[31]
Papailiopoulos D., Dimakis A., Korokythakis S., Sparse PCA through low-rank approximations, in: International Conference on Machine Learning, PMLR, 2013, pp. 747–755.
[32]
Raghu M., Gilmer J., Yosinski J., Sohl-Dickstein J., Svcca: Singular vector canonical correlation analysis for deep learning dynamics and interpretability, Adv. Neural Inf. Process. Syst. 30 (2017).
[33]
C. Simon, P. Koniusz, R. Nock, M. Harandi, Adaptive subspaces for few-shot learning, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 4136–4145.
[34]
Chan T.-H., Jia K., Gao S., Lu J., Zeng Z., Ma Y., PCANet: A simple deep learning baseline for image classification?, IEEE Trans. Image Process. 24 (12) (2015) 5017–5032.
[35]
Shlens J., A tutorial on principal component analysis, 2014, arXiv preprint arXiv:1404.1100.
[36]
Hastie T., Tibshirani R., Friedman J.H., Friedman J.H., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, 2009.
[37]
Jiang X., Asymmetric principal component and discriminant analyses for pattern classification, IEEE Trans. Pattern Anal. Mach. Intell. 31 (5) (2008) 931–937.
[38]
Huang S., Yang D., Yongxin G., Zhang X., Combined supervised information with PCA via discriminative component selection, Inform. Process. Lett. 115 (11) (2015) 812–816.
[39]
Belhumeur P.N., Hespanha J.P., Kriegman D.J., Eigenfaces vs. fisherfaces: Recognition using class specific linear projection, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 711–720.
[40]
Lee D.D., Seung H.S., Learning the parts of objects by non-negative matrix factorization, Nature 401 (6755) (1999) 788–791.
[41]
Babaee M., Tsoukalas S., Babaee M., Rigoll G., Datcu M., Discriminative nonnegative matrix factorization for dimensionality reduction, Neurocomputing 173 (2016) 212–223.
[42]
Cai X., Sun F., Supervised and constrained nonnegative matrix factorization with sparseness for image representation, Wirel. Pers. Commun. 102 (4) (2018) 3055–3066.
[43]
Lee D., Seung H.S., Algorithms for non-negative matrix factorization, in: Leen T., Dietterich T., Tresp V. (Eds.), Advances in Neural Information Processing Systems, Vol. 13, MIT Press, 2001, URL https://proceedings.neurips.cc/paper/2000/file/f9d1152547c0bde01830b7e8bd60024c-Paper.pdf.
[44]
Dong A., Li Z., Zheng Q., Transferred subspace learning based on non-negative matrix factorization for EEG signal classification, Front. Neurosci. 15 (2021).
[45]
Leuschner J., Schmidt M., Fernsel P., Lachmund D., Boskamp T., Maass P., Supervised non-negative matrix factorization methods for MALDI imaging applications, Bioinformatics 35 (11) (2019) 1940–1947.
[46]
Chen Z., Jin S., Liu R., Zhang J., A deep non-negative matrix factorization model for big data representation learning, Front. Neurorobotics (2021) 93.
[47]
Liu H., Wu Z., Li X., Cai D., Huang T.S., Constrained nonnegative matrix factorization for image representation, IEEE Trans. Pattern Anal. Mach. Intell. 34 (7) (2011) 1299–1311.
[48]
Hardoon D.R., Szedmak S., Shawe-Taylor J., Canonical correlation analysis: An overview with application to learning methods, Neural Comput. 16 (12) (2004) 2639–2664.
[49]
Janowczyk A., Madabhushi A., Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases, J. Pathol. Inform. 7 (2016).
[51]
Zhao J., Zhang Y., He X., Xie P., COVID-CT-dataset: a CT scan dataset about COVID-19, 2020, arXiv preprint arXiv:2003.13865.
[52]
Liu R., Wang X., Wu Q., Dai L., Fang X., Yan T., Son J., Tang S., Li J., Gao Z., et al., DeepDRiD: Diabetic retinopathy—Grading and image quality estimation challenge, Patterns (2022).
[53]
Acevedo A., Merino A., Alférez S., Molina Á., Boldú L., Rodellar J., A dataset of microscopic peripheral blood cell images for development of automatic recognition systems, Data Brief (ISSN ) 30 (2020).
[54]
Al-Dhabyani W., Gomaa M., Khaled H., Fahmy A., Dataset of breast ultrasound images, Data Brief 28 (2020).
[55]
Tschandl P., Rosendahl C., Kittler H., The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions, Sci. Data 5 (1) (2018) 1–9.
[56]
Codella N.C., Gutman D., Celebi M.E., Helba B., Marchetti M.A., Dusza S.W., Kalloo A., Liopyris K., Mishra N., Kittler H., et al., Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging (isbi), hosted by the international skin imaging collaboration (isic), in: 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018, IEEE, 2018, pp. 168–172.
[57]
Kermany D.S., Goldbaum M., Cai W., Valentim C.C., Liang H., Baxter S.L., McKeown A., Yang G., Wu X., Yan F., et al., Identifying medical diagnoses and treatable diseases by image-based deep learning, Cell 172 (5) (2018) 1122–1131.
[58]
Bilic P., Christ P.F., Vorontsov E., Chlebus G., Chen H., Dou Q., Fu C.W., Han X., Heng P.-A., Hesser J., et al., The liver tumor segmentation benchmark (LiTS), 2019, arXiv preprint arXiv:1901.04056.
[59]
Kather J.N., Krisam J., Charoentong P., Luedde T., Herpel E., Weis C.-A., Gaiser T., Marx A., Valous N.A., Ferber D., et al., Predicting survival from colorectal cancer histology slides using deep learning: A retrospective multicenter study, PLoS Med. 16 (1) (2019).
[60]
Woloshuk A., Khochare S., Almulhim A.F., McNutt A.T., Dean D., Barwinska D., Ferkowicz M.J., Eadon M.T., Kelly K.J., Dunn K.W., et al., In situ classification of cell types in human kidney tissue using 3D nuclear staining, Cytometry A 99 (7) (2021) 707–721.
[61]
Ljosa V., Sokolnicki K.L., Carpenter A.E., Annotated high-throughput microscopy image sets for validation, Nat. Methods 9 (7) (2012) 637.
[62]
Cruz-Roa A., Basavanhally A., González F., Gilmore H., Feldman M., Ganesan S., Shih N., Tomaszewski J., Madabhushi A., Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks, in: Medical Imaging 2014: Digital Pathology, Vol. 9041, SPIE, 2014.
[63]
Yang J., Shi R., Wei D., Liu Z., Zhao L., Ke B., Pfister H., Ni B., MedMNIST v2: A large-scale lightweight benchmark for 2D and 3D biomedical image classification, 2021, arXiv preprint arXiv:2110.14795.
[64]
. Pytorch, PyTorch, Forward and backward function hooks—PyTorch documentation. URL https://pytorch.org/tutorials/beginner/former_torchies/nnft_tutorial.html#forward-and-backward-function-hooks.
[65]
B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning deep features for discriminative localization, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 2921–2929.
[66]
Alomar K., Aysel H.I., Cai X., Data augmentation in classification and segmentation: a survey and new strategies, J. Imaging 9 (2023) URL https://doi.org/10.3390/jimaging9020046.
[67]
Lake B.M., Salakhutdinov R., Tenenbaum J.B., The omniglot challenge: a 3-year progress report, Curr. Opin. Behav. Sci. 29 (2019) 97–104.
[68]
Kingma D.P., Ba J., Adam: A method for stochastic optimization, 2014, arXiv preprint arXiv:1412.6980.
[69]
Hong D., Yokoya N., Chanussot J., Zhu X.X., An augmented linear mixing model to address spectral variability for hyperspectral unmixing, IEEE Trans. Image Process. 28 (4) (2018) 1923–1938.
[70]
Jovanović M.R., Schmid P.J., Nichols J.W., Sparsity-promoting dynamic mode decomposition, Phys. Fluids 26 (2) (2014).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Image and Vision Computing
Image and Vision Computing  Volume 152, Issue C
Dec 2024
283 pages

Publisher

Butterworth-Heinemann

United States

Publication History

Published: 01 December 2024

Author Tags

  1. Few-shot learning
  2. Principal component analysis
  3. Non-negative matrix factorization
  4. Classification
  5. Subspace
  6. Medical imaging

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 28 Feb 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media