[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking

Published: 13 January 2024 Publication History

Abstract

We introduce a data-driven version of the plus Cartan connection on the homogeneous space M2 of 2D positions and orientations. We formulate a theorem that describes all shortest and straight curves (parallel velocity and parallel momentum, respectively) with respect to this new data-driven connection and corresponding Riemannian manifold. Then we use these shortest curves for geodesic tracking of complex vasculature in multi-orientation image representations defined on M2. The data-driven Cartan connection characterizes the Hamiltonian flow of all geodesics. It also allows for improved adaptation to curvature and misalignment of the (lifted) vessel structure that we track via globally optimal geodesics. We compute these geodesics numerically via steepest descent on distance maps on M2 that we compute by a new modified anisotropic fast-marching method.Our experiments range from tracking single blood vessels with fixed endpoints to tracking complete vascular trees in retinal images. Single vessel tracking is performed in a single run in the multi-orientation image representation, where we project the resulting geodesics back onto the underlying image. The complete vascular tree tracking requires only two runs and avoids prior segmentation, placement of extra anchor points, and dynamic switching between geodesic models. Altogether we provide a geodesic tracking method using a single, flexible, transparent, data-driven geodesic model providing globally optimal curves which correctly follow highly complex vascular structures in retinal images. All experiments in this article can be reproduced via documented Mathematica notebooks available  at van den Berg (Data-driven left-invariant tracking in Mathematica, 2022).

References

[1]
Bekkers, E.: Retinal Image Analysis Using Sub-Riemannian Geometry in SE(2). PhD thesis, TU Eindhoven (2017)
[2]
Weiler DL, Engelke CB, Moore AL, and Harrison WW Arteriole tortuosity associated with diabetic retinopathy and cholesterol Optom. Vis. Sci. 2015 92 3 384-391
[3]
Sasongko MB, Wong TY, Nguyen TT, Cheung CY, Shaw JE, Kawasaki R, Lamoureux EL, and Wang JJ Retinal vessel tortuosity and its relation to traditional and novel vascular risk markers in persons with diabetes Curr. Eye Res. 2016 41 4 551-557
[4]
Colligris, P., Perez de Lara, M.J., Colligris, B., Pintor, J.: Ocular manifestations of Alzheimer’s and other neurodegenerative diseases: the prospect of the eye as a tool for the early diagnosis of Alzheimer’s disease. J. Ophthalmol. (2018)
[5]
Bekkers, E.J., Zhang, J., Duits, R., ter Haar Romeny, B.M.: Curvature based biomarkers for diabetic retinopathy via exponential curve fits in SE(2). In: Proceedings of the Ophthalmic Medical Image Analysis Second International Workshop, OMIA, pp. 113–120 (2015)
[6]
Kalitzeos AA, Lip GYH, and Heitmar R Retinal vessel tortuosity measures and their applications Exp. Eye Res. 2013 106 40-46
[7]
Cheung C, Lamoureux E, Ikram M, Sasongko M, Ding J, Zheng Y, Mitchell P, Wang J, and Wong T Retinal vascular geometry in Asian persons with diabetes and retinopathy J. Diabetes Sci. Technol. 2012 6 3 595-605
[8]
Sasongko M, Wong T, Nguyen T, Cheung C, Shaw J, and Wang J Retinal vascular tortuosity in persons with diabetes and diabetic retinopathy Diabetologia 2011 54 9 2409-2416
[9]
Chen, D., Cohen, L.D.: A new dynamic minimal path model for tubular structure centerline delineation. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3001–3006 (2018)
[10]
Liu, L., Chen, D., Shu, M., Shu, H., Cohen, L.D.: A new tubular structure tracking algorithm based on curvature-penalized perceptual grouping. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2195–2199 (2021)
[11]
Liu, L., Chen, D., Cohen, L.D., Shu, H., Pâques, M.: Vessel extraction using crossing-adaptive minimal path model with anisotropic enhancement and curvature constraint. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 20–23 (2019)
[12]
Bekkers EJ, Duits R, Mashtakov A, and Sanguinetti GR A PDE approach to data-driven sub-Riemannian geodesics in SE(2) SIAM J. Imag. Sci. 2015 8 4 2740-2770
[13]
Cootes TF, Taylor CJ, Cooper DH, and Graham J Active shape models-their training and application Comput. Vis. Image Underst. 1995 61 1 38-59
[14]
Caselles V, Kimmel R, and Sapiro G Geodesic active contours Int. J. Comput. Vision 1997 22 61-79
[15]
Cohen LD Multiple contour finding and perceptual grouping using minimal paths J. Math. Imaging Vis. 2001 14 3 225-236
[16]
Sapiro G Geometric Partial Differential Equations and Image Analysis 2006 Cambridge Cambridge University Press
[17]
Peyré G, Péchaud M, Keriven R, Cohen LD, et al. Geodesic methods in computer vision and graphics Found. Trends Comput. Graph. Vis. 2010 5 3–4 197-397
[18]
Chen D, Spencer J, Mirebeau JM, Chen K, Shu M, and Cohen LD A generalized asymmetric dual-front model for active contours and image segmentation IEEE Trans. Image Process. 2021 30 5056-5071
[19]
Péchaud, M., Descoteaux, M., Keriven, R.: Brain connectivity using geodesics in HARDI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 482–489. Springer, Berlin (2009)
[20]
Portegies J, Meesters S, Ossenblok P, Fuster A, Florack L, and Duits R Bonet-Carne E, Grussu F, Ning L, Sepehrband F, and Tax CMW Brain connectivity measures via direct sub-Finslerian front propagation on the 5D sphere bundle of positions and directions Computational Diffusion MRI 2019 Cham Springer 309-321
[21]
Chen, D.: New Minimal Paths Models for Tubular Structure Extraction and Image Segmentation. Ph.D. thesis, University Paris-Dauphine (2016)
[22]
Benmansour F and Cohen LD Tubular structure segmentation based on minimal path method and anisotropic enhancement Int. J. Comput. Vis. 2011 92 2 192-210
[23]
Bekkers E, Duits R, Berendschot T, and ter Haar Romeny B A multi-orientation analysis approach to retinal vessel tracking J. Math. Imaging Vis. 2014 49 3 583-610
[24]
Franken E and Duits R Crossing–preserving coherence-enhancing diffusion on invertible orientation scores Int. J. Comput. Vis. 2009 85 3 253
[25]
Boscain Ugo, Charlot Grégoire, and Rossi Francesco Existence of planar curves minimizing length and curvature Proc. Steklov Inst. Math. 2010 270 43-56
[26]
Duits R, Boscain U, Rossi F, and Sachkov Y Association fields via cuspless sub-Riemannian geodesics in SE(2) J. Math. imaging Vis. 2014 49 2 384-417
[27]
Bao D, Chern SS, and Shen Z An Introduction to Riemann–Finsler Geometry 2000 New York Springer
[28]
Duits R, Meesters SP, Mirebeau JM, and Portegies JM Optimal paths for variants of the 2D and 3D Reeds–Shepp car with applications in image analysis J. Math. Imaging Vis. 2018 60 816-848
[29]
Reeds J and Shepp L Optimal paths for a car that goes both forwards and backwards Pac. J. Math. 1990 145 2 367-393
[30]
Absil PA, Mahony R, and Sepulchre R Optimization Algorithms on Matrix Manifolds 2009 Princeton Princeton University Press
[31]
Bekkers, E.J., Chen, D., Portegies, J.M.: Nilpotent approximations of sub-Riemannian distances for fast perceptual grouping of blood vessels in 2D and 3D. J. Math. Imaging Vis. 60, 1–18 (2018)
[32]
Chen D, Mirebeau JM, and Cohen LD Vessel tree extraction using radius-lifted keypoints searching scheme and anisotropic fast marching method J. Algorithms Comput. Technol. 2016 10 4 224-234
[33]
Abbasi-Sureshjani S, Zhang J, Duits R, and ter Haar Romeny B Retrieving challenging vessel connections in retinal images by line co-occurrence statistics Biol. Cybern. 2017 111 3 237-247
[34]
Mirebeau JM Fast-marching methods for curvature penalized shortest paths J. Math. Imaging Vis. 2018 60 6 784-815
[35]
Mashtakov A Nielsen F and Barbaresco F Extremal controls for the duits car Geometric Science of Information 2021 Cham Springer 73-81
[36]
Mirebeau JM and Portegies J Hamiltonian fast marching: a numerical solver for anisotropic and non-holonomic Eikonal PDEs Image Process. Line 2019 9 47-93
[37]
Zhang J, Dashtbozorg B, Bekkers EJ, Pluim JP, Duits R, and HaarRomeny BMt Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores IEEE Trans. Med. Imaging 2016 35 12 2631-2644
[38]
Abbasi-Sureshjani S, Smit-Ockeloen I, Zhang J, and Ter Haar Romeny B Kamel M and Campilho A Biologically-inspired supervised vasculature segmentation in SLO retinal fundus images Image Analysis and Recognition 2015 Cham Springer 325-334
[39]
Duits, R.: Perceptual Organization in Image Analysis: A Mathematical Approach Based on Scale, Orientation and Curvature. Ph.D. thesis, Eindhoven University of Technology (2005)
[40]
Duits R, Duits M, van Almsick M, and ter Haar Romeny B Invertible orientation scores as an application of generalized wavelet theory Pattern Recognit Image Anal. 2007 17 1 42-75
[41]
Duits R and Franken EM Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part I: Linear left-invariant diffusion equations on SE(2) Quart. Appl. Math. AMS 2010 68 255-292
[42]
Franceschiello B, Mashtakov A, Citti G, and Sarti A Geometrical optical illusion via sub-Riemannian geodesics in the roto-translation group Differ. Geom. Appl. 2019 65 55-77
[43]
Duits, R., Smets, B., Wemmenhove, J., Portegies, J., Bekkers, E.: Springer Handbook of Mathematical Imaging 2021, chap. Recent Geometric Flows in Multi-Orientation Image Processing via a Cartan Connection, pp. 1–60. Springer, Berlin (2021)
[44]
Kobayashi S and Nomizu K Foundations of Differential Geometry 1963 New York Wiley
[45]
Cogliati A and Mastrolia P Cartan, Schouten and the search for connection Hist. Math. 2017 45 39-74
[46]
Piuze E, Sporring J, and Siddiqi K Maurer–Cartan forms for fields on surfaces: application to heart fiber geometry IEEE Trans. Pattern Anal. Mach. Intell. 2015 37 12 2492-2504
[47]
Momayyez, P., Siddiqi, K.: 3D stochastic completion fields for fiber tractography. In: 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 178–185 (2009)
[48]
Duits, R., Smets, B.M.N., Wemmenhove, A.J., Portegies, J.W., Bekkers, E.J.: Recent geometric flows in multi-orientation image processing via a Cartan connection. In: Handbook of Mathematical Models and Algorithms in Computer Vision and Imaging: Mathematical Imaging and Vision pp. 1–60 (2021)
[49]
Hannink, J., Duits, R., Bekkers, E.: Crossing-preserving multi-scale vesselness. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 603–610. Springer, Berlin (2014)
[50]
Chen D and Cohen LD Fast asymmetric fronts propagation for image segmentation J. Math. Imaging Vis. 2018 60 6 766-783
[51]
Sethian JA Fast marching methods SIAM Rev. 1999 41 2 199-235
[52]
Mirebeau JM Riemannian fast-marching on Cartesian grids, using Voronoi’s first reduction of quadratic forms SIAM J. Numer. Anal. 2019 57 6 2608-2655
[53]
Selling E Ueber die binären und ternären quadratischen formen Journal für die reine und angewandte Mathematik 1874 77 143-229
[54]
Savadjiev P, Strijkers G, Bakermans A, Piuze E, Zucker S, and Siddiqi K Heart wall myofibers are arranged in minimal surfaces to optimize organ function PNAS 2012 109 24 9248-9253
[55]
Duits R, Janssen MH, Hannink J, and Sanguinetti GR Locally adaptive frames in the roto-translation group and their applications in medical imaging J. Math. Imaging Vis. 2016 56 3 367-402
[56]
Duits R and Franken E Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores part II: Nonlinear left-invariant diffusions on invertible orientation scores Q. Appl. Math. 2010 68 2 293-331
[57]
Haar Romeny BM Front-End Vision and Multi-Scale Image Analysis 2003 Berlin Springer
[58]
Marsden JE and Ratiu TS Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems 2013 Berlin Springer
[59]
Montgomery R A Tour of Subriemannian Geometries, Their Geodesics and Applications 2002 Providence American Mathematical Society
[60]
Agrachev, A.A., Sachkov, Y.L.: Control Theory from the Geometrical Viewpoint, vol. 87. Springer, Berlin (2004)
[61]
Agrachev, A., Barilari, D., Boscain, U.: A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2019)
[62]
Moiseev I and Sachkov YL Maxwell strata in sub-Riemannian problem on the group of motions of a plane ESAIM: Control Optim. Calc. Var. 2010 16 2 380-399
[63]
Duits R, Ghosh A, Dela Haije T, and Mashtakov A On sub-Riemannian geodesics in SE(3) whose spatial projections do not have cusps J. Dyn. Control Syst. 2016 22 4 771-805
[64]
Citti G and Sarti A A cortical based model of perceptional completion in the roto-translation space J. Math. Imaging Vis. 2006 24 3 307-326
[65]
Sachkov Y Cut locus and optimal synthesis in the sub-Riemannian problem on the group of motions of a plane ESAIM: Control Optim Calc. Var. 2011 17 293-321
[66]
Evans LC Partial Differential Quations 1998 Providence AMS
[67]
Smets BM, Portegies J, St-Onge E, and Duits R Total variation and mean curvature PDEs on the homogeneous space of positions and orientations J. Math. Imaging Vis. 2021 63 2 237-262
[68]
Smets, B.M.N., Portegies, J., Bekkers, E.J., Duits, R.: PDE-based group equivariant convolutional neural networks. J. Math. Imaging Vis. 65, 209–239 (2023).
[69]
Lichtenstein M, Pai G, and Kimmel R Lellmann J, Burger M, and Modersitzki J Deep eikonal solvers Scale Space and Variational Methods in Computer Vision 2019 Cham Springer 38-50
[70]
Berg, N.J.v.d.: Data-driven left-invariant tracking in Mathematica. https://github.com/NickyvdBerg/DataDrivenTracking (2022)
[71]
Frangi R, Niessen W, Vincken K, and Viergever M Multiscale vessel enhancement filtering Med. Image Comput. Comput. Assist. Interv. 2000 1496 130-137

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 66, Issue 2
Apr 2024
138 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 13 January 2024
Accepted: 20 November 2023
Received: 20 September 2022

Author Tags

  1. Eikonal PDE
  2. Geodesic tracking
  3. Hamiltonian flow
  4. Lie groups
  5. Cartan Connections
  6. Vessel tracking

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media