[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-031-24340-0_18guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Related Tasks Can Share! A Multi-task Framework for Affective Language

Published: 26 February 2023 Publication History

Abstract

Expressing the polarity of sentiment as ‘positive’ and ‘negative’ usually have limited scope compared with the intensity/degree of polarity. These two tasks (i.e. sentiment classification and sentiment intensity prediction) are closely related and may offer assistance to each other during the learning process. In this paper, we propose to leverage the relatedness of multiple tasks in a multi-task learning framework. Our multi-task model is based on convolutional-Gated Recurrent Unit (GRU) framework, which is further assisted by a diverse hand-crafted feature set. Evaluation and analysis suggest that joint-learning of the related tasks in a multi-task framework can outperform each of the individual tasks in the single-task frameworks.

References

[1]
Baccianella, S., Esuli, A., Sebastiani, F.: SentiWordNet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: LREC, vol. 10, pp. 2200–2204 (2010)
[2]
Baziotis, C., et al.: NTUA-SLP at SemEval-2018 task 1: predicting affective content in tweets with deep attentive RNNs and transfer learning. arXiv Preprint arXiv:1804.06658 (2018)
[3]
Baziotis, C., Pelekis, N., Doulkeridis, C.: DataStories at SemEval-2017 task 4: deep LSTM with attention for message-level and topic-based sentiment analysis. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pp. 747–754 (2017)
[4]
Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, NY, USA, pp. 160–167 (2008)
[5]
Duppada, V., Jain, R., Hiray, S.: SeerNet at SemEval-2018 task 1: domain adaptation for affect in tweets. arXiv Preprint arXiv:1804.06137 (2018)
[6]
Eisner, B., Rocktäschel, T., Augenstein, I., Bošnjak, M., Riedel, S.: emoji2vec: learning emoji representations from their description. arXiv Preprint arXiv:1609.08359 (2016)
[7]
Felbo, B., Mislove, A., Søgaard, A., Rahwan, I., Lehmann, S.: Using-millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In: Conference on Empirical Methods in Natural Language Processing (EMNLP) (2017)
[8]
Gee, G., Wang, E.: psyML at SemEval-2018 task 1: transfer learning for sentiment and emotion analysis. In: Proceedings of The 12th International Workshop on Semantic Evaluation, pp. 369–376 (2018)
[9]
Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)
[10]
Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 1367 (2004)
[11]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv Preprint arXiv:1412.6980 (2014)
[12]
Kiros, R., et al.: Skip-thought vectors. arXiv Preprint arXiv:1506.06726 (2015)
[13]
LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. In: The Handbook of Brain Theory and Neural Networks, vol. 3361, no. 10 (1995)
[14]
Meisheri, H., Dey, L.: TCS research at SemEval-2018 task 1: learning robust representations using multi-attention architecture. In: Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 291–299 (2018)
[15]
Mohammad, S., Bravo-Marquez, F., Salameh, M., Kiritchenko, S.: SemEval-2018 task 1: affect in tweets. In: Proceedings of the 12th International Workshop on Semantic Evaluation, pp. 1–17 (2018)
[16]
Mohammad, S.M., Bravo-Marquez, F.: Emotion intensities in tweets. arXiv Preprint arXiv:1708.03696 (2017)
[17]
Mohammad, S.M., Bravo-Marquez, F.: WASSA-2017 shared task on emotion intensity. arXiv Preprint arXiv:1708.03700 (2017)
[18]
Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-2010), pp. 807–814 (2010)
[19]
Nakov, P., Ritter, A., Rosenthal, S., Sebastiani, F., Stoyanov, V.: SemEval-2016 task 4: sentiment analysis in Twitter. In: Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp. 1–18 (2016)
[20]
Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up?: Sentiment classification using machine learning techniques. In: Proceedings of the ACL-2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 79–86 (2002)
[21]
Park, J.H., Xu, P., Fung, P.: PlusEmo2Vec at SemEval-2018 task 1: exploiting emotion knowledge from emoji and hashtags. arXiv Preprint arXiv:1804.08280 (2018)
[22]
Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)
[23]
Radford, A., Jozefowicz, R., Sutskever, I.: Learning to generate reviews and discovering sentiment. arXiv Preprint arXiv:1704.01444 (2017)
[24]
Ramsundar, B., Kearnes, S., Riley, P., Webster, D., Konerding, D., Pande, V.: Massively multitask networks for drug discovery. arXiv Preprint arXiv:1502.02072 (2015)
[25]
Rosenthal, S., Farra, N., Nakov, P.: SemEval-2017 task 4: sentiment analysis in Twitter. In: Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pp. 502–518, August 2017
[26]
Rozental, A., Fleischer, D.: Amobee at SemEval-2018 task 1: GRU neural network with a CNN attention mechanism for sentiment classification. arXiv Preprint arXiv:1804.04380 (2018)
[27]
Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv Preprint arXiv:1706.05098 (2017)
[28]
Schuster M and Paliwal K Bidirectional recurrent neural networks Trans. Sig. Proc. 1997 45 11 2673-2681
[29]
Socher, R., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
[30]
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, and Salakhutdinov R Dropout: a simple way to prevent neural networks from overfitting J. Mach. Learn. Res. 2014 15 1929-1958
[31]
Suykens JA and Vandewalle J Least squares support vector machine classifiers Neural Process. Lett. 1999 9 3 293-300
[32]
Thelwall M, Buckley K, Paltoglou G, Cai D, and Kappas A Sentiment strength detection in short informal text J. Am. Soc. Inform. Sci. Technol. 2010 61 12 2544-2558

Index Terms

  1. Related Tasks Can Share! A Multi-task Framework for Affective Language
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        Computational Linguistics and Intelligent Text Processing: 20th International Conference, CICLing 2019, La Rochelle, France, April 7–13, 2019, Revised Selected Papers, Part II
        Apr 2019
        682 pages
        ISBN:978-3-031-24339-4
        DOI:10.1007/978-3-031-24340-0

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 26 February 2023

        Author Tags

        1. Multi-task learning
        2. Single-task learning
        3. Sentiment classification
        4. Sentiment intensity prediction

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 03 Jan 2025

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media