[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.24963/kr.2023/23guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

A framework for combining entity resolution and query answering in knowledge bases

Published: 02 September 2023 Publication History

Abstract

We propose a new framework for combining entity resolution and query answering in knowledge bases (KBs) with tuple-generating dependencies (tgds) and equality-generating dependencies (egds) as rules. We define the semantics of the KB in terms of special instances that involve equivalence classes of entities and sets of values. Intuitively, the former collect all entities denoting the same real-world object, while the latter collect all alternative values for an attribute. This approach allows us to both resolve entities and bypass possible inconsistencies in the data. We then design a chase procedure that is tailored to this new framework and has the feature that it never fails; moreover, when the chase procedure terminates, it produces a universal solution, which in turn can be used to obtain the certain answers to conjunctive queries. We finally discuss challenges arising when the chase does not terminate.

References

[1]
Arasu, A.; Ré, C.; and Suciu, D. 2009. Large-scale deduplication with constraints using dedupalog. In Proc. of the 25th IEEE Int. Conf. on Data Engineering (ICDE), 952-963.
[2]
Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.; and Patel-Schneider, P. F., eds. 2007. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2nd edition.
[3]
Baget, J.; Leclère, M.; Mugnier, M.; and Salvat, E. 2011. On rules with existential variables: Walking the decidability line. Artificial Intelligence 175(9-10):1620-1654.
[4]
Bahmani, Z.; Bertossi, L. E.; Kolahi, S.; and Lakshmanan, L. V. S. 2012. Declarative entity resolution via matching dependencies and answer set programs. In Brewka, G.; Eiter, T.; and McIlraith, S. A., eds., Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR), 380-390.
[5]
Beeri, C., and Vardi, M. Y. 1984. A proof procedure for data dependencies. J. of the ACM 31(4):718-741.
[6]
Benjelloun, O.; Garcia-Molina, H.; Menestrina, D.; Su, Q.; Whang, S. E.; and Widom, J. 2009. Swoosh: a generic approach to entity resolution. Very Large Database J. 18(1):255-276.
[7]
Bertossi, L. E.; Kolahi, S.; and Lakshmanan, L. V. S. 2013. Data cleaning and query answering with matching dependencies and matching functions. Theoretical Computer Science 52(3):441-482.
[8]
Bienvenu, M., and Ortiz, M. 2015. Ontology-mediated query answering with data-tractable description logics. In Faber, W., and Paschke, A., eds., Reasoning Web. Semantic Technologies for Intelligent Data Access - 11th Int. Summer School Tutorial Lectures (RW), volume 9203, 218-307.
[9]
Bienvenu, M.; Cima, G.; Gutiérrez-Basulto, V.; and Ibáûez-García, Y. 2023. Combining global and local merges in logic-based entity resolution. In Proc. of the 20th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR).
[10]
Bienvenu, M.; Cima, G.; and Gutiérrez-Basulto, V. 2022. LACE: A logical approach to collective entity resolution. In
[11]
Proc. of the 41st ACM SIGACT SIGMOD SIGAI Symp. on Principles of Database Systems (PODS), 379-391.
[12]
Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W. 2016. A declarative framework for linking entities. ACM Trans. on Database Systems 41(3):17:1-17:38.
[13]
Burdick, D.; Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W. 2019. Expressive power of entity-linking frameworks. J. of Computer and System Sciences 100:44-69.
[14]
Calautti, M., and Pieris, A. 2021. Semi-oblivious chase termination: The sticky case. Theoretical Computer Science 65(1):84-121.
[15]
Calì, A.; Gottlob, G.; and Kifer, M. 2013. Taming the infinite chase: Query answering under expressive relational constraints. J. of Artificial Intelligence Research 48:115-174.
[16]
Calì, A.; Gottlob, G.; and Lukasiewicz, T. 2012. A general datalog-based framework for tractable query answering over ontologies. J. of Web Semantics 14:57-83.
[17]
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and Rosati, R. 2007. Tractable reasoning and efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning 39(3):385-429.
[18]
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.; and Rosati, R. 2018. Ontology-based data access and integration. In Liu, L., and Özsu, M. T., eds., Encyclopedia of Database Systems, Second Edition. Springer.
[19]
Cuenca Grau, B.; Horrocks, I.; Krötzsch, M.; Kupke, C.; Magka, D.; Motik, B.; and Wang, Z. 2013. Acyclicity notions for existential rules and their application to query answering in ontologies. J. of Artificial Intelligence Research 47:741-808.
[20]
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase revisited. In Proc. of the 27 th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), 149-158.
[21]
Doan, A.; Halevy, A. Y.; and Ives, Z. G. 2012. Principles of Data Integration. Morgan Kaufmann.
[22]
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005. Data exchange: Semantics and query answering. Theoretical Computer Science 336(1):89-124.
[23]
Fan, W. 2008. Dependencies revisited for improving data quality. In Proc. of the 27th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), 159-170.
[24]
Grahne, G., and Onet, A. 2018. Anatomy of the chase. Fundamenta Informaticae 157(3):221-270.
[25]
Johnson, D. S., and Klug, A. C. 1984. Testing containment of conjunctive queries under functional and inclusion dependencies. J. of Computer and System Sciences 28(1):167-189.
[26]
Krötzsch, M.; Marx, M.; and Rudolph, S. 2019. The power of the terminating chase (invited talk). In Proc. of the 22nd Int. Conf. on Database Theory (ICDT), volume 127 of LIPIcs, 3:1-3:17.
[27]
Lenzerini, M. 2002. Data integration: A theoretical perspective. In Proc. of the 21st ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), 233-246.
[28]
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive query answering in the description logic EL using a relational database system. In Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI), 2070-2075.
[29]
Marnette, B. 2009. Generalized schema-mappings: from termination to tractability. In Proc. of the 28th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS), 13-22.
[30]
Papadakis, G.; Ioannou, E.; Thanos, E.; and Palpanas, T. 2021. The Four Generations of Entity Resolution. Synthesis Lectures on Data Management. Morgan & Claypool Publishers.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
KR '23: Proceedings of the 20th International Conference on Principles of Knowledge Representation and Reasoning
September 2023
778 pages
ISBN:978-1-956792-02-7

Sponsors

  • Principles of Knowledge Representation and Reasoning, Incorporated (KR, Inc.)
  • Artificial Intelligence Journal
  • National Science Foundation
  • Association for Logic Programming
  • School of Embedded Composite Artificial Intelligence

Publisher

Unknown publishers

Publication History

Published: 02 September 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media