[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

VM Consolidation Plan for Improving the Energy Efficiency of Cloud

Published: 01 September 2021 Publication History

Abstract

Achieving energy-efficiency with minimal Service Level Agreement (SLA) violation constraint is a major challenge in cloud datacenters owing to financial and environmental concerns. The static consolidation of Virtual Machines (VMs) is not much significant in recent time and has become outdated because of the unpredicted workload of cloud users. In this paper, a dynamic consolidation plan is proposed to optimize the energy consumption of the cloud datacenter. The proposed plan encompasses algorithms for VM selection and VM placement. The VM selection algorithm estimates power consumption of each VM to select the required VMs for migration from the overloaded Physical Machine (PM). The proposed VM allocation algorithm estimates the net increase in Imbalance Utilization Value (IUV) and power consumption of a PM, in advance before allocating the VM. The analysis of simulation results suggests that the proposed dynamic consolidation plan outperforms other state of arts.

References

[1]
1. Shynu, P. G., K. J. Singh. A Comprehensive Survey and Analysis on Access Control Schemes in Cloud Environment. – Cybernetics and Information Technologies, Vol. 16, 2016, No 1, pp. 19-38.
[2]
2. Beloglazov, A., R. Buyya. Managing Overloaded Hosts for Dynamic Consolidation of Virtual Machines in Cloud Data Centers under Quality-of-Service Constraints. – IEEE Transactions on Parallel and Distributed Systems, 2013.
[3]
3. Puhan, S., D. Panda, B. K. Mishra. Energy Efficiency for Cloud Computing Applications: A Survey on the Recent Trends and Future Scopes. IEEE Xplore, 2020.
[4]
4. Wang, H., H. Tianfield. Energy-Aware Dynamic Virtual Machine Consolidation for Cloud Datacenters. – IEEE, Vol. 6, 2018, pp. 15259-15273.
[5]
5. Beloglazov, A., R. Buyya. Optimal Online Deterministic Algorithms and Adaptive Heuristics for Energy and Performance Efficient Dynamic Consolidation of Virtual Machines in Cloud Datacenters. – Concurr. Comput. Pract., 2013, pp. 1397-1420. https://doi.org/10.1002/cpe.1867
[6]
6. Masdar, M., M. Zangakani. Green Cloud Computing Using Proactive Virtual Machine Placement: Challenges and Issues, Springer Nature B. V. 2019. – J. Grid Computing. https://doi.org/10.1007/s10723-019-09489-9
[7]
7. Lee, H. M., Y. Jeong, H. J. Jang. Performance Analysis-Based Resource Allocation for Green Cloud. – J. Supercomput., Vol. 69, 2014, pp. 1013-1026. https://doi.org/10.1007/s11227-013-1020-x
[8]
8. Esfandiarpoor, S., A. Pahlavan, M. Goudarzi. Structure-Aware Online Virtual Machine Consolidation for Datacenter Energy Improvement in Cloud Computing. – Comput. Electr. Eng., Vol. 42, 2015. https://doi.org/10.1016/j.compeleceng.2014.09.005
[9]
9. Madhumala, R. B., H. Tiwari, C. Devaraj Verma. Virtual Machine Placement Using Energy – Efficient Particle Swarm Optimization in Cloud Datacenter. – Cybernetics and Information Technologies, Vol. 21, 2021, No 1, pp. 62-72.
[10]
10. Ferreto, T. C., M. A. S. Netto, R. N. Calherious, C. A. F. De Rsoe. Server Consolidation with Migration Control for Virtualized Data Centers. – Future Generation Computer Systems, October 2011. https://doi.org/10.1016/j.future.2011.04.016
[11]
11. Bruno, B. C., C. Ribas, R. M. Suguimoto, R. A. N. R. Montaño, F. Silva, L. D. Bona, M. A. Castilho. On Modelling Virtual Machine Consolidation to Pseudo-Boolean Constraints. – J. Pavon, Ed. 2012. pp. 361-370. https://doi.org/10.1007/978-3-642
[12]
12. Fard, S. Y. Z., M. R. Ahmadi, S. Adabi. A Dynamic VM Consolidation Technique for QoS and Energy Consumption in Cloud Environment. – J. Supercomput., Vol. 73, 2017, pp. 4347-4368. https://doi.org/10.1007/s11227-017-2016-8
[13]
13. Kumar, M. R. V., S. Raghunathan. Heterogeneity and Thermal Aware Adaptive Heuristics for Energy Efficient Consolidation of Virtual Machines in Infrastructure Clouds. – Journal of Computer and System Sciences, March 2016. https://doi.org/10.1016/j.jcss.2015.07.005
[14]
14. Arianyan, E., H. Taheri, S. Sharifian. Novel Energy and SLA Efficient Resource Management Heuristics for Consolidation of Virtual Machines in Cloud Data Centers. – Comput. Electr. Eng., Vol. 47, 2015, pp. 222-240. https://doi.org/10.1016/j.compeleceng.2015.05.006
[15]
15. Okada, T. K., A. De La Fuente Vigliotti, D. M. Batista, A. Goldman vel Lejbman. Consolidation of VMs to Improve Energy Efficiency in Cloud Computing Environments. – In: Proc. of 2015 XXXIII Brazilian Symposium on Computer Networks and Distributed Systems, Vitoria, 2015, pp. 150-158.
[16]
16. Kollu, A., V. Sucharita. Energy-Aware Multi-Objective Differential Evolution in Cloud Computing. – In: S. Dash, S. Das, B. Panigrahi, Eds. Proc. of International Conference on Intelligent Computing and Applications. Advances in Intelligent Systems and Computing. Vol. 632. Singapore, Springer, 2017. https://doi.org/10.1007/978-981-10-5520-1_40
[17]
17. Horri, A., M. S. Mozafari, G. Dastghaibyfard. Novel Resource Allocation Algorithms to Performance and Energy Efficiency in Cloud Computing. – J. Supercomput., Vol. 69, 2014, pp. 1445-1461. https://doi.org/10.1007/s11227-014-1224-8
[18]
18. Mandal, R., M. K. Mondal, S. Banerjee, U. Biswas. An Approach toward Design and Development of an Energy‐Aware VM Selection Policy with Improved SLA Violation in the Domain of Green Cloud Computing. Springer Science+Business Media, LLC, Part of Springer Nature 2020, The Journal of Supercomputing. https://doi.org/10.1007/s11227-020-03165-6
[19]
19. Wood, T., P. Shenoy, A. Venkataramani, M. Yousif. Black-Box and Gray-Box Strategies for Virtual Machine Migration. – In: Proc. of 4th USENIX Symposium on Networked Systems Design Implementation (NSDI’07), 11-13 April 2007, USA, pp. 229-242.
[20]
20. Tian, W., Y. Zhao, Y. Zhong, M. Xu, C. Jing. A Dynamic and Integrated Load-Balancing Scheduling Algorithm for Cloud Datacenters. – In: Proc. of 2011 IEEE International Conference on Cloud Computing and Intelligence Systems, 2011, pp. 311-315.
[21]
21. Lin, X., Z. Liu, W. Guo. Energy-Efficient VM Placement Algorithms for Cloud Data Center. – In: W. Qiang, X. Zheng, C. H. Hsu, Eds. Proc. of Cloud Computing and Big Data. CloudCom-Asia 2015. Vol. 9106. Cham, Springer, 2015. https://doi.org/10.1007/978-3-319-28430-9_4
[22]
22. Greenberg, A., D. Hamilton, A. Maltz, P. Patel. The Cost of a Cloud Research Problems in Data Centers Networks. – In: Proc. of ACM SICOMM, Vol. 39, 2009, No 1, pp. 68-73.
[23]
23. Khosravi, A., S. K Garg., R. Buyya. Energy and Carbon-Efficient Placement of Virtual Machines in Distributed Cloud Data Centers. – In: F. Wolf, B. Mohr, D. an Mey, Eds. Proc. of Euro-Par 2013 Parallel Processing. Euro-Par 2013. Lecture Notes in Computer Science, Vol. 8097. Berlin, Heidelberg, Springer, 2013. https://doi.org/10.1007/978-3-642-40047-6_33
[24]
24. Mazzucco, M., D. Dyachuk, R. Deters. Maximizing Cloud Providers’ Revenues via Energy Aware Allocation Policies. – In: Proc. of 2010 IEEE 3rd International Conference on Cloud Computing, Miami, FL, 2010, pp. 131-138.
[25]
25. Rivoire, S., P. Ranganathan, C. Kozyrakis. A Comparison of High-Level Full-System Power Models. – In: Proc. of 2008 Conference on Power Aware Computing and Systems (HotPower’08), USENIX Association, USA.
[26]
26. Kavanagh, R., D. Armstrong, K. Djemame, D. Sommacampagna, L. Blasi. Towards an Energy-Aware Cloud Architecture for Smart Grids. – In: J. Altmann, G. Silaghi, O. Rana, Eds. Proc. of Economics of Grids, Clouds, Systems, and Services (GECON’15). Vol. 9512. Cham, Springer, 2015. https://doi.org/10.1007/978-3-319-43177-2_13
[27]
27. Voorsluys, W., J. Broberg, S. Venugopal, R. Buyya. Cost of Virtual Machine Live Migration in Clouds: A Performance Evaluation. – In: M. G. Jaatun, G. Zhao, C. Rong, Eds. Proc. of Cloud Computing. CloudCom 2009. Lecture Notes in Computer Science. Vol. 5931. Berlin, Heidelberg, Springer. https://doi.org/10.1007/978-3-642-10665-1_23
[28]
28. Hongyou, L., W. Jiangyong, P. Jian, W. Junfeng, L. Tang. Energy-Aware Scheduling Scheme Using Workload-Aware Consolidation Technique in Cloud Data Centres. – China Communications, Vol. 10, 2013, No 12, pp. 114-124.
[29]
29. Simarro, J. L. L., R. M. Vozmediano, R. S. Montero, I. M. Liorente. Scheduling Strategies for Optimal Service Deployment across Multiple Clouds. – Future Generation Computer Systems, Vol. 29, 2013, No 6, pp. 1431-1441. https://doi.org/10.1016/j.future.2012.01.007
[30]
30. Calheiros, R. N., R. Ranjan, A. Beloglazov, De C. A. F. Rose, R. Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms. – Softw. Pract. Exp., Vol. 41, 2010, No 1, pp. 23-50, https://doi.org/10.1002/spe.995
[33]
33. Park, S., V. Pai. CoMon Monitoring System for Planet Lab. – ACM SIGOPS Operating Systems Review, Vol. 40, January 2006, Issue 1, pp. 65-74. https://doi.org/10.1145/1113361.1113374

Cited By

View all
  • (2023)Enhancing Face Anti-Spoofing with Swin Transformer-driven Multi-stage PipelineProceedings of the 12th International Symposium on Information and Communication Technology10.1145/3628797.3628948(40-47)Online publication date: 7-Dec-2023
  • (2022)DOG-ADTCPExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.117207201:COnline publication date: 1-Sep-2022

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Cybernetics and Information Technologies
Cybernetics and Information Technologies  Volume 21, Issue 3
Sep 2021
344 pages
ISSN:1314-4081
EISSN:1314-4081
Issue’s Table of Contents
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Publisher

Walter de Gruyter GmbH

Berlin, Germany

Publication History

Published: 01 September 2021

Author Tags

  1. VM consolidation
  2. VM selection
  3. VM allocation
  4. resource allocation
  5. power consumption
  6. energy efficiency

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Enhancing Face Anti-Spoofing with Swin Transformer-driven Multi-stage PipelineProceedings of the 12th International Symposium on Information and Communication Technology10.1145/3628797.3628948(40-47)Online publication date: 7-Dec-2023
  • (2022)DOG-ADTCPExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.117207201:COnline publication date: 1-Sep-2022

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media