[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v33i01.33012506guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Geometry-aware face completion and editing

Published: 27 January 2019 Publication History

Abstract

Face completion is a challenging generation task because it requires generating visually pleasing new pixels that are semantically consistent with the unmasked face region. This paper proposes a geometry-aware Face Completion and Editing NETwork (FCENet) by systematically studying facial geometry from the unmasked region. Firstly, a facial geometry estimator is learned to estimate facial landmark heatmaps and parsing maps from the unmasked face image. Then, an encoder-decoder structure generator serves to complete a face image and disentangle its mask areas conditioned on both the masked face image and the estimated facial geometry images. Besides, since low-rank property exists in manually labeled masks, a low-rank regularization term is imposed on the disentangled masks, enforcing our completion network to manage occlusion area with various shape and size. Furthermore, our network can generate diverse results from the same masked input by modifying estimated facial geometry, which provides a flexible mean to edit the completed face appearance. Extensive experimental results qualitatively and quantitatively demonstrate that our network is able to generate visually pleasing face completion results and edit face attributes as well.

References

[1]
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein gan. In ICML.
[2]
Barnes, C.; Shechtman, E.; Finkelstein, A.; and Goldman, D. B. 2009. Patchmatch: A randomized correspondence algorithm for structural image editing. TOG 28(3):24.
[3]
Bertalmio, M.; Sapiro, G.; Caselles, V.; and Ballester, C. 2000. Image inpainting. In SIGGRAPH.
[4]
Bertalmio, M.; Vese, L.; Sapiro, G.; and Osher, S. 2003. Simultaneous structure and texture image inpainting. TIP 19(3):340-358.
[5]
Bulat, A., and Tzimiropoulos, G. 2017. How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In ICCV.
[6]
Chen, Y.; Shen, C.; Wei, X.-S.; Liu, L.; and Yang, J. 2017. Adversarial posenet: A structure-aware convolutional network for human pose estimation. In ICCV.
[7]
Criminisi, A.; Pérez, P.; and Toyama, K. 2004. Region filling and object removal by exemplar-based image inpainting. TIP 13(9): 1200-1212.
[8]
Darabi, S.; Shechtman, E.; Barnes, C.; Goldman, D. B.; and Sen, P. 2012. Image melding: Combining inconsistent images using patch-based synthesis. TOG 31(4):82-1.
[9]
Elad, M.; Starck, J.-L.; Querre, P.; and Donoho, D. L. 2005. Simultaneous cartoon and texture image inpainting using morphological component analysis (mca). ACHA 19(3):340-358.
[10]
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. In NIPS.
[11]
Gross, R.; Matthews, I.; Cohn, J.; Kanade, T.; and Baker, S. 2010. Multi-pie. IVC 28(5):807-813.
[12]
Hays, J., and Efros, A. A. 2007. Scene completion using millions of photographs. TOG 26(3):4.
[13]
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning for image recognition. In CVPR.
[14]
Hu, Y.; Wu, X.; Yu, B.; He, R.; and Sun, Z. 2018. Poseguided photorealistic face rotation. In CVPR.
[15]
Huang, J.-B.; Kang, S. B.; Ahuja, N.; and Kopf, J. 2014. Image completion using planar structure guidance. TOG 36(4): 107.
[16]
Huang, R.; Zhang, S.; Li, T.; He, R.; et al. 2017. Beyond face rotation: Global and local perception gan for photorealistic and identity preserving frontal view synthesis. In ICCV.
[17]
Iizuka, S.; Simo-Serra, E.; and Ishikawa, H. 2017. Globally and locally consistent image completion. TOG 36(4): 107.
[18]
Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual losses for real-time style transfer and super-resolution. In ECCV.
[19]
Kingma, D. P., and Ba, J. 2015. Adam: A method for stochastic optimization. In ICLR.
[20]
Ledig, C.; Theis, L.; Huszár, F.; Caballero, J.; Cunningham, A.; Acosta, A.; Aitken, A.; Tejani, A.; Totz, J.; Wang, Z.; et al. 2017. Photo-realistic single image super-resolution using a generative adversarial network. In CVPR.
[21]
Li, C., and Wand, M. 2016. Combining markov random fields and convolutional neural networks for image synthesis. In CVPR.
[22]
Li, Y.; Liu, S.; Yang, J.; and Yang, M.-H. 2017. Generative face completion. In CVPR.
[23]
Liu, S.; Yang, J.; Huang, C.; and Yang, M.-H. 2015a. Multiobjective convolutional learning for face labeling. In CVPR.
[24]
Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015b. Deep learning face attributes in the wild. In ICCV.
[25]
Liu, P.; Qi, X.; He, P.; Li, Y.; Lyu, M. R.; and King, I. 2017. Semantically consistent image completion with fine-grained details. In arXiv preprint arXiv: 1711.09345.
[26]
Mao, X.; Li, Q.; Xie, H.; Lau, R. Y.; Wang, Z.; and Smolley, S. P. 2017. Least squares generative adversarial networks. In ICCV.
[27]
Newell, A.; Yang, K.; and Deng, J. 2016. Stacked hourglass networks for human pose estimation. In ECCV.
[28]
Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and Efros, A. A. 2016. Context encoders: Feature learning by inpainting. In CVPR.
[29]
Radford, A.; Metz, L.; and Chintala, S. 2016. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR.
[30]
Shen, W, and Liu, R. 2017. Learning residual images for face attribute manipulation. In CVPR.
[31]
Yeh, R. A.; Chen, C.; Lim, T. Y.; Schwing, A. G.; Hasegawa-Johnson, M.; and Do, M. N. 2017. Semantic image inpainting with deep generative models. In CVPR.
[32]
Zhang, S.; He, R.; Sun, Z.; and Tan, T. 2016. Multi-task convnet for blind face inpainting with application to face verification. In ICB.
[33]
Zhang, S.; He, R.; Sun, Z.; and Tan, T. 2018. Demeshnet: Blind face inpainting for deep meshface verification. TIFS 13(3):637-647.

Cited By

View all
  • (2023)Cascading Blend Network for Image InpaintingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/360895220:1(1-21)Online publication date: 13-Jul-2023
  • (2022)Deep Multi-Resolution Mutual Learning for Image InpaintingProceedings of the 30th ACM International Conference on Multimedia10.1145/3503161.3548030(6359-6367)Online publication date: 10-Oct-2022
  • (2021)Progressive Semantic Reasoning for Image InpaintingCompanion Proceedings of the Web Conference 202110.1145/3442442.3451142(68-76)Online publication date: 19-Apr-2021

Index Terms

  1. Geometry-aware face completion and editing
        Index terms have been assigned to the content through auto-classification.

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Guide Proceedings
        AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
        January 2019
        10088 pages
        ISBN:978-1-57735-809-1

        Sponsors

        • Association for the Advancement of Artificial Intelligence

        Publisher

        AAAI Press

        Publication History

        Published: 27 January 2019

        Qualifiers

        • Research-article
        • Research
        • Refereed limited

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)65
        • Downloads (Last 6 weeks)6
        Reflects downloads up to 03 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2023)Cascading Blend Network for Image InpaintingACM Transactions on Multimedia Computing, Communications, and Applications10.1145/360895220:1(1-21)Online publication date: 13-Jul-2023
        • (2022)Deep Multi-Resolution Mutual Learning for Image InpaintingProceedings of the 30th ACM International Conference on Multimedia10.1145/3503161.3548030(6359-6367)Online publication date: 10-Oct-2022
        • (2021)Progressive Semantic Reasoning for Image InpaintingCompanion Proceedings of the Web Conference 202110.1145/3442442.3451142(68-76)Online publication date: 19-Apr-2021

        View Options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Login options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media