[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v33i01.33017402guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

Data augmentation for spoken language understanding via joint variational generation

Published: 27 January 2019 Publication History

Abstract

Data scarcity is one of the main obstacles of domain adaptation in spoken language understanding (SLU) due to the high cost of creating manually tagged SLU datasets. Recent works in neural text generative models, particularly latent variable models such as variational autoencoder (VAE), have shown promising results in regards to generating plausible and natural sentences. In this paper, we propose a novel generative architecture which leverages the generative power of latent variable models to jointly synthesize fully annotated utterances. Our experiments show that existing SLU models trained on the additional synthetic examples achieve performance gains. Our approach not only helps alleviate the data scarcity issue in the SLU task for many datasets but also indiscriminately improves language understanding performances for various SLU models, supported by extensive experiments and rigorous statistical testing.

References

[1]
Al-Rfou, R.; Perozzi, B.; and Skiena, S. 2013. Polyglot: Distributed word representations for multilingual nlp. In CoNLL, 183–192.
[2]
Bowman, S. R.; Vilnis, L.; Vinyals, O.; Dai, A.; Jozefowicz, R.; and Bengio, S. 2016. Generating sentences from a continuous space. In CoNLL, 10–21.
[3]
Chen, Y.-N.; Hakanni-Tür, D.; Tur, G.; Celikyilmaz, A.; Guo, J.; and Deng, L. 2016. Syntax or semantics? knowledge-guided joint semantic frame parsing. In SLT Workshop, 348–355.
[4]
Conneau, A.; Kiela, D.; Schwenk, H.; Barrault, L.; and Bordes, A. 2017. Supervised learning of universal sentence representations from natural language inference data. In EMNLP, 670–680.
[5]
Dao, T.; Gu, A.; Ratner, A. J.; Smith, V.; De Sa, C.; and Ré, C. 2018. A kernel theory of modern data augmentation. arXiv preprint arXiv:1803.06084.
[6]
Fabius, O., and van Amersfoort, J. R. 2014. Variational recurrent auto-encoders. arXiv preprint arXiv:1412.6581.
[7]
Fadaee, M.; Bisazza, A.; and Monz, C. 2017. Data augmentation for low-resource neural machine translation. In ACL, volume 2, 567–573.
[8]
Fedus, W.; Goodfellow, I.; and Dai, A. M. 2018. Maskgan: Better text generation via filling in the arXiv preprint arXiv:1801.07736.
[9]
Goo, C.-W.; Gao, G.; Hsu, Y.-K.; Huo, C.-L.; Chen, T.-C.; Hsu, K.-W.; and Chen, Y.-N. 2018. Slot-gated modeling for joint slot filling and intent prediction. In NAACL, volume 2, 753–757.
[10]
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y. 2014. Generative adversarial nets. In NIPS, 2672–2680.
[11]
Guo, D.; Tur, G.; Yih, W.-t.; and Zweig, G. 2014. Joint semantic utterance classification and slot filling with recursive neural networks. In SLT Workshop, 554–559.
[12]
Hemphill, C. T.; Godfrey, J. J.; and Doddington, G. R. 1990. The atis spoken language systems pilot corpus. In The Workshop on Speech and Natural Language, 96–101.
[13]
Hou, Y.; Liu, Y.; Che, W.; and Liu, T. 2018. Sequence-to-sequence data augmentation for dialogue language understanding. In ICCL, 1234–1245.
[14]
Hu, Z.; Yang, Z.; Liang, X.; Salakhutdinov, R.; and Xing, E. P. 2017. Toward controlled generation of text. In ICML, 1587–1596.
[15]
Huang, Z.; Xu, W.; and Yu, K. 2015. Bidirectional lstm-crf models for sequence tagging. arXiv preprint arXiv:1508.01991.
[16]
Ioffe, S., and Szegedy, C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 448–456.
[17]
Kafle, K.; Yousefhussien, M.; and Kanan, C. 2017. Data augmentation for visual question answering. In INLG, 198– 202.
[18]
Kingma, D. P., and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[19]
Kingma, D. P., and Welling, M. 2013. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
[20]
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Imagenet classification with deep convolutional neural networks. In NIPS, 1097–1105.
[21]
Kurata, G.; Xiang, B.; Zhou, B.; and Yu, M. 2016b. Leveraging sentence-level information with encoder lstm for semantic slot filling. In EMNLP, 2077–2083.
[22]
Kurata, G.; Xiang, B.; and Zhou, B. 2016a. Labeled data generation with encoder-decoder lstm for semantic slot filling. In INTERSPEECH, 725–729.
[23]
Lai, S.; Xu, L.; Liu, K.; and Zhao, J. 2015. Recurrent convolutional neural networks for text classification. In AAAI, volume 333, 2267–2273.
[24]
Li, J.; Monroe, W.; Shi, T.; Jean, S.; Ritter, A.; and Jurafsky, D. 2017. Adversarial learning for neural dialogue generation. In EMNLP, 2157–2169.
[25]
Liu, B., and Lane, I. 2016. Attention-based recurrent neural network models for joint intent detection and slot filling. In INTERSPEECH, 685–689.
[26]
Mesnil, G.; Dauphin, Y.; Yao, K.; Bengio, Y.; Deng, L.; Hakkani-Tur, D.; He, X.; Heck, L.; Tur, G.; Yu, D.; and Zweig, G. 2015. Using recurrent neural networks for slot filling in spoken language understanding. IEEE/ACM TASLP 23:530–539.
[27]
Pan, S. J., and Yang, Q. 2010. A Survey on Transfer Learning. IEEE TKDE 22:1345–1359.
[28]
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove: Global vectors for word representation. In EMNLP, 1532– 1543.
[29]
Ratner, A. J.; Ehrenberg, H.; Hussain, Z.; Dunnmon, J.; and Ré, C. 2017. Learning to compose domain-specific transformations for data augmentation. In NIPS, 3236–3246.
[30]
Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014. Stochastic backpropagation and approximate inference in deep generative models. In ICML, II–1278.
[31]
Serban, I. V.; Sordoni, A.; Lowe, R.; Charlin, L.; Pineau, J.; Courville, A. C.; and Bengio, Y. 2017. A hierarchical latent variable encoder-decoder model for generating dialogues. In AAAI, 3295–3301.
[32]
Shen, T.; Lei, T.; Barzilay, R.; and Jaakkola, T. 2017. Style transfer from non-parallel text by cross-alignment. In NIPS, 6830–6841.
[33]
Simard, P.; Steinkraus, D.; and Platt, J. 2003. Best practices for convolutional neural networks applied to visual document analysis. In ICDAR, 958.
[34]
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and Salakhutdinov, R. 2014. Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1):1929–1958.
[35]
Torralba, A., and Efros, A. A. 2011. Unbiased look at dataset bias. In CVPR, 1521–1528.
[36]
Yao, K.; Peng, B.; Zhang, Y.; Yu, D.; Zweig, G.; and Shi, Y. 2014. Spoken language understanding using long short-term memory neural networks. In SLT Workshop, 189–194.
[37]
Yu, L.; Zhang, W.; Wang, J.; and Yu, Y. 2017. Seqgan: Sequence generative adversarial nets with policy gradient. In AAAI, 2852–2858.
[38]
Zoph, B.; Yuret, D.; May, J.; and Knight, K. 2016. Transfer learning for low-resource neural machine translation. In EMNLP, 1568–1575.

Cited By

View all
  • (2021)Pseudo Siamese Network for Few-shot Intent GenerationProceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3404835.3462995(2005-2009)Online publication date: 11-Jul-2021
  • (2020)Natural language understanding approaches based on joint task of intent detection and slot filling for IoT voice interactionNeural Computing and Applications10.1007/s00521-020-04805-x32:20(16149-16166)Online publication date: 13-Mar-2020

Index Terms

  1. Data augmentation for spoken language understanding via joint variational generation
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Guide Proceedings
          AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
          January 2019
          10088 pages
          ISBN:978-1-57735-809-1

          Sponsors

          • Association for the Advancement of Artificial Intelligence

          Publisher

          AAAI Press

          Publication History

          Published: 27 January 2019

          Qualifiers

          • Research-article
          • Research
          • Refereed limited

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)23
          • Downloads (Last 6 weeks)2
          Reflects downloads up to 19 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2021)Pseudo Siamese Network for Few-shot Intent GenerationProceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3404835.3462995(2005-2009)Online publication date: 11-Jul-2021
          • (2020)Natural language understanding approaches based on joint task of intent detection and slot filling for IoT voice interactionNeural Computing and Applications10.1007/s00521-020-04805-x32:20(16149-16166)Online publication date: 13-Mar-2020

          View Options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media