[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v33i01.33014189guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article
Free access

From zero-shot learning to cold-start recommendation

Published: 27 January 2019 Publication History

Abstract

Zero-shot learning (ZSL) and cold-start recommendation (CSR) are two challenging problems in computer vision and recommender system, respectively. In general, they are independently investigated in different communities. This paper, however, reveals that ZSL and CSR are two extensions of the same intension. Both of them, for instance, attempt to predict unseen classes and involve two spaces, one for direct feature representation and the other for supplementary description. Yet there is no existing approach which addresses CSR from the ZSL perspective. This work, for the first time, formulates CSR as a ZSL problem, and a tailor-made ZSL method is proposed to handle CSR. Specifically, we propose a Lowrank Linear Auto-Encoder (LLAE), which challenges three cruxes, i.e., domain shift, spurious correlations and computing efficiency, in this paper. LLAE consists of two parts, a low-rank encoder maps user behavior into user attributes and a symmetric decoder reconstructs user behavior from user attributes. Extensive experiments on both ZSL and CSR tasks verify that the proposed method is a win-win formulation, i.e., not only can CSR be handled by ZSL models with a significant performance improvement compared with several conventional state-of-the-art methods, but the consideration of CSR can benefit ZSL as well.

References

[1]
Bobadilla, J.; Ortega, F.; Hernando, A.; and Gutiérrez, A. 2013. Recommender systems survey. Knowledge-based systems 46:109-132.
[2]
Boureau, Y.-L.; Chopra, S.; LeCun, Y.; et al. 2007. A unified energy-based framework for unsupervised learning. In Artificial Intelligence and Statistics, 371-379.
[3]
Cantador, I.; Brusilovsky, P. L.; and Kuflik, T. 2011. Second workshop on information heterogeneity and fusion in recommender systems (hetrec2011).
[4]
Ding, Z.; Shao, M.; and Fu, Y. 2017. Low-rank embedded ensemble semantic dictionary for zero-shot learning. In CVPR. IEEE.
[5]
Ding, Z.; Shao, M.; and Fu, Y. 2018. Incomplete multisource transfer learning. IEEE TNNLS 29(2):310-323.
[6]
Ekstrand, M. D.; Riedl, J. T.; Konstan, J. A.; et al. 2011. Collaborative filtering recommender systems. Foundations and Trends® in Human-Computer Interaction 4(2):81-173.
[7]
Farhadi, A.; Endres, I.; Hoiem, D.; and Forsyth, D. 2009. Describing objects by their attributes. In CVPR, 1778-1785. IEEE.
[8]
Fernández-Tobías, I.; Cantador, I.; Kaminskas, M.; and Ricci, F. 2012. Cross-domain recommender systems: A survey of the state of the art. In Spanish Conference on Information Retrieval, 24.
[9]
Fernández-Tobías, I.; Braunhofer, M.; Elahi, M.; Ricci, F.; and Cantador, I. 2016. Alleviating the new user problem in collaborative filtering by exploiting personality information. User Modeling and User-Adapted Interaction 26(2-3):221-255.
[10]
Gantner, Z.; Drumond, L.; Freudenthaler, C.; Rendle, S.; and Schmidt-Thieme, L. 2010. Learning attribute-to-feature mappings for cold-start recommendations. In ICDM, 176-185. IEEE.
[11]
Kodirov, E.; Xiang, T.; Fu, Z.; and Gong, S. 2015. Unsupervised domain adaptation for zero-shot learning. In ICCV, 2452-2460.
[12]
Kodirov, E.; Xiang, T.; and Gong, S. 2017. Semantic autoencoder for zero-shot learning. arXiv preprint arXiv: 1704.08345.
[13]
Krohn-Grimberghe, A.; Drumond, L.; Freudenthaler, C.; and Schmidt-Thieme, L. 2012. Multi-relational matrix factorization using bayesian personalized ranking for social network data. In ACM WSDM, 173-182. ACM.
[14]
Lampert, C. H.; Nickisch, H.; and Harmeling, S. 2014. Attribute-based classification for zero-shot visual object categorization. IEEE TPAMI 36(3):453-465.
[15]
Li, J.; Wu, Y.; Zhao, J.; and Lu, K. 2016. Low-rank discriminant embedding for multiview learning. IEEE TCYB.
[16]
Li, J.; Lu, K.; Huang, Z.; and Shen, H. T. 2017. Two birds one stone: On both cold-start and long-tail recommendation. In ACM MM, 898-906. ACM.
[17]
Li, J.; Lu, K.; Huang, Z.; Zhu, L.; and Shen, H. T. 2018a. Heterogeneous domain adaptation through progressive alignment. IEEE TNNLS.
[18]
Li, J.; Lu, K.; Huang, Z.; Zhu, L.; and Shen, H. T. 2018b. Transfer independently together: A generalized framework for domain adaptation. IEEE TCYB.
[19]
Li, J.; Zhu, L.; Huang, Z.; Lu, K.; and Zhao, J. 2018c. I read, i saw, i tell: Texts assisted fine-grained visual classification. In ACM MM, 663-671. ACM.
[20]
Lin, J.; Sugiyama, K.; Kan, M.-Y; and Chua, T.-S. 2013. Addressing cold-start in app recommendation: latent user models constructed from twitter followers. In ACM SIGIR, 283-292. ACM.
[21]
Mohamed, A.-r.; Dahl, G. E.; and Hinton, G. 2012. Acoustic modeling using deep belief networks. IEEE TASLP 20(1): 14-22.
[22]
Noel, J.; Sanner, S.; Tran, K.-N.; Christen, P.; Xie, L.; Bonilla, E. V.; Abbasnejad, E.; and Delia Penna, N. 2012. New objective functions for social collaborative filtering. In WWW, 859-868. ACM.
[23]
Patterson, G., and Hays, J. 2012. Sun attribute database: Discovering, annotating, and recognizing scene attributes. In CVPR, 2751-2758. IEEE.
[24]
Rohani, V. A.; Kasirun, Z. M.; Kumar, S.; and Shamshirband, S. 2014. An effective recommender algorithm for cold-start problem in academic social networks. Mathematical Problems in Engineering 2014.
[25]
Romera-Paredes, B., and Torr, P. 2015. An embarrassingly simple approach to zero-shot learning. In ICML, 2152-2161.
[26]
Sedhain, S.; Sanner, S.; Braziunas, D.; Xie, L.; and Christensen, J. 2014. Social collaborative filtering for cold-start recommendations. In ACM RecSys, 345-348. ACM.
[27]
Sedhain, S.; Menon, A. K.; Sanner, S.; Xie, L.; and Braziunas, D. 2017. Low-rank linear cold-start recommendation from social data. In AAAI, 1502-1508.
[28]
Smith, B., and Linden, G. 2017. Two decades of recommender systems at amazon.com. IEEE Internet Computing 21(3): 12-18.
[29]
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich, A. 2015. Going deeper with convolutions. In CVPR, 1-9.
[30]
Tang, L.; Wang, X.; and Liu, H. 2012. Scalable learning of collective behavior. TKDE 24(6): 1080-1091.
[31]
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P. A. 2008. Extracting and composing robust features with denoising autoencoders. In ICML, 1096-1103.
[32]
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie, S. 2011. The caltech-ucsd birds-200-2011 dataset.
[33]
Yang, Y.; Luo, Y.; Chen, W.; Shen, F.; Shao, J.; and Shen, H. T. 2016. Zero-shot hashing via transferring supervised knowledge. In ACM MM, 1286-1295. ACM.
[34]
Zhang, Z., and Saligrama, V. 2015. Zero-shot learning via semantic similarity embedding. In ICCV, 4166-4174.
[35]
Zhang, Z., and Saligrama, V. 2016. Zero-shot learning via joint latent similarity embedding. In CVPR, 6034-6042.
[36]
Zhang, M.-L., and Zhou, Z.-H. 2014. A review on multi-label learning algorithms. IEEE TKDE 26(8): 1819-1837.

Cited By

View all
  • (2024)Quantum Nearest Neighbor Collaborative Filtering Algorithm for Recommendation SystemACM Transactions on Knowledge Discovery from Data10.1145/367498218:8(1-28)Online publication date: 29-Jun-2024
  • (2024)Multi-Task Neural Linear Bandit for Exploration in Recommender SystemsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671649(5723-5730)Online publication date: 25-Aug-2024
  • (2024)An E-Commerce Dataset Revealing Variations during SalesProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657870(1162-1171)Online publication date: 10-Jul-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'19/IAAI'19/EAAI'19: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence
January 2019
10088 pages
ISBN:978-1-57735-809-1

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 27 January 2019

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)155
  • Downloads (Last 6 weeks)4
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Quantum Nearest Neighbor Collaborative Filtering Algorithm for Recommendation SystemACM Transactions on Knowledge Discovery from Data10.1145/367498218:8(1-28)Online publication date: 29-Jun-2024
  • (2024)Multi-Task Neural Linear Bandit for Exploration in Recommender SystemsProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining10.1145/3637528.3671649(5723-5730)Online publication date: 25-Aug-2024
  • (2024)An E-Commerce Dataset Revealing Variations during SalesProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657870(1162-1171)Online publication date: 10-Jul-2024
  • (2024)Pre-trained Recommender Systems: A Causal Debiasing PerspectiveProceedings of the 17th ACM International Conference on Web Search and Data Mining10.1145/3616855.3635779(424-433)Online publication date: 4-Mar-2024
  • (2024)BCE4ZSRInformation Processing and Management: an International Journal10.1016/j.ipm.2024.10368661:3Online publication date: 2-Jul-2024
  • (2024)Di-GraphGANInformation Sciences: an International Journal10.1016/j.ins.2024.120911677:COnline publication date: 1-Aug-2024
  • (2023)Linkless link prediction via relational distillationProceedings of the 40th International Conference on Machine Learning10.5555/3618408.3618890(12012-12033)Online publication date: 23-Jul-2023
  • (2023)Using Neural and Graph Neural Recommender Systems to Overcome Choice Overload: Evidence From a Music Education PlatformACM Transactions on Information Systems10.1145/363787342:4(1-26)Online publication date: 20-Dec-2023
  • (2023)Deep Learning Models for Serendipity Recommendations: A Survey and New PerspectivesACM Computing Surveys10.1145/360514556:1(1-26)Online publication date: 20-Jun-2023
  • (2023)Multi-task Item-attribute Graph Pre-training for Strict Cold-start Item RecommendationProceedings of the 17th ACM Conference on Recommender Systems10.1145/3604915.3608806(322-333)Online publication date: 14-Sep-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media