[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v38i20.30211guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Fair multivariate adaptive regression splines for ensuring equity and transparency

Published: 20 February 2024 Publication History

Abstract

Predictive analytics is widely used in various domains, including education, to inform decision-making and improve outcomes. However, many predictive models are proprietary and inaccessible for evaluation or modification by researchers and practitioners, limiting their accountability and ethical design. Moreover, predictive models are often opaque and incomprehensible to the officials who use them, reducing their trust and utility. Furthermore, predictive models may introduce or exacerbate bias and inequity, as they have done in many sectors of society. Therefore, there is a need for transparent, interpretable, and fair predictive models that can be easily adopted and adapted by different stakeholders. In this paper, we propose a fair predictive model based on multivariate adaptive regression splines (MARS) that incorporates fairness measures in the learning process. MARS is a non-parametric regression model that performs feature selection, handles non-linear relationships, generates interpretable decision rules, and derives optimal splitting criteria on the variables. Specifically, we integrate fairness into the knot optimization algorithm and provide theoretical and empirical evidence of how it results in a fair knot placement. We apply our fair MARS model to real-world data and demonstrate its effectiveness in terms of accuracy and equity. Our paper contributes to the advancement of responsible and ethical predictive analytics for social good.

References

[1]
Agarwal, A.; Dudík, M.; and Wu, Z. S. 2019. Fair regression: Quantitative definitions and reduction-based algorithms. In International Conference on Machine Learning, 120-129. PMLR.
[2]
Agarwal, S. 2021. Trade-offs between fairness and inter-pretability in machine learning. In IJCAI 2021 Workshop on AI for Social Good.
[3]
Aghaei, S.; Azizi, M. J.; and Vayanos, P. 2019. Learning optimal and fair decision trees for non-discriminative decisionmaking. Proceedings of the AAAI Conference on Artificial Intelligence, 33(01): 1418-1426.
[4]
Barocas, S.; and Selbst, A. D. 2016. Big data's disparate impact. Calif. L. Rev., 104: 671.
[5]
Berk, R.; Heidari, H.; Jabbari, S.; Joseph, M.; Kearns, M.; Morgenstern, J.; Neel, S.; and Roth, A. 2017. A convex framework for fair regression. arXiv preprint arXiv:1706.02409.
[6]
Böhm, C.; Naumann, F.; Abedjan, Z.; Fenz, D.; Grütze, T.; Hefenbrock, D.; Pohl, M.; and Sonnabend, D. 2010. Profiling linked open data with ProLOD. In 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010), 175-178. IEEE.
[7]
Bozick, R.; Lauff, E.; and Wirt, J. 2007. Education Longitudinal Study of 2002 (ELS: 2002): A First Look at the Initial Postsecondary Experiences of the High School Sophomore Class of 2002. National Center for Education Statistics.
[8]
Cabrera, Á. A.; Epperson, W.; Hohman, F.; Kahng, M.; Morgenstern, J.; and Chau, D. H. 2019. FairVis: Visual analytics for discovering intersectional bias in machine learning. In 2019 IEEE Conference on Visual Analytics Science and Technology (VAST), 46-56. IEEE.
[9]
Calders, T.; Kamiran, F.; and Pechenizkiy, M. 2009. Building classifiers with independency constraints. In 2009 IEEE International Conference on Data Mining Workshops, 13-18. IEEE.
[10]
Calders, T.; Karim, A.; Kamiran, F.; Ali, W.; and Zhang, X. 2013. Controlling Attribute Effect in Linear Regression. 2013 IEEE 13th International Conference on Data Mining, 71-80.
[11]
Calmon, F.; Wei, D.; Vinzamuri, B.; Ramamurthy, K. N.; and Varshney, K. R. 2017. Optimized pre-processing for discrimination prevention. In Advances in Neural Information Processing Systems, 3992-4001.
[12]
Chouldechova, A. 2017. Fair prediction with disparate impact: A study of bias in recidivism prediction instruments. Big data, 5(2): 153-163.
[13]
Cortez, P. 2014. Student Performance. https://archive.ics.uci.edu/dataset/320/student+performance. Accessed: 2024-01-24.
[14]
Cruz, A. F.; Belém, C.; Jesus, S.; Bravo, J.; Saleiro, P.; and Bizarro, P. 2023. FairGBM: Gradient Boosting with Fairness Constraints. arXiv:2209.07850.
[15]
Dheeru, D.; and Taniskidou, E. K. 2017. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml. Accessed: 2023-01-18.
[16]
Dwork, C.; Hardt, M.; Pitassi, T.; Reingold, O.; and Zemel, R. 2012. Fairness through awareness. In ITCS, 214-226.
[17]
Feldman, M.; Friedler, S. A.; Moeller, J.; Scheidegger, C.; and Venkatasubramanian, S. 2015. Certifying and removing disparate impact. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 259-268. ACM.
[18]
Friedler, S. A.; Scheidegger, C.; Venkatasubramanian, S.; Choudhary, S.; Hamilton, E. P.; and Roth, D. 2019. A comparative study of fairness-enhancing interventions in machine learning. In Proceedings of the Conference on Fairness, Accountability, and Transparency, 329-338. ACM.
[19]
Friedman, J. H. 1991. Multivariate adaptive regression splines. The annals of statistics, 1-67.
[20]
Fu, Z.; Xian, Y.; Gao, R.; Zhao, J.; Huang, Q.; Ge, Y.; Xu, S.; Geng, S.; Shah, C.; Zhang, Y.; et al. 2020. Fairness-aware explainable recommendation over knowledge graphs. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 69-78.
[21]
Haghighat, P. 2024. fairMARS: Py-earth Package Enhanced with Fairness Components for fair Multivariate Adaptive Regression Splines (MARS) implementation.
[22]
Hardt, M.; Price, E.; and Srebro, N. 2016. Equality of opportunity in supervised learning. In Advances in neural information processing systems, 3315-3323.
[23]
Hu, L.; and Chen, Y. 2020. Fair classification and social welfare. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 535-545.
[24]
Jabbari, S.; Joseph, M.; Kearns, M.; Morgenstern, J.; and Roth, A. 2016. Fairness in reinforcement learning. arXiv preprint arXiv:1611.03071.
[25]
Kamiran, F.; and Calders, T. 2009. Classifying without discriminating. In 2009 2nd International Conference on Computer, Control and Communication, 1-6. IEEE.
[26]
Kamiran, F.; and Calders, T. 2012. Data preprocessing techniques for classification without discrimination. Knowledge and Information Systems, 33(1): 1-33.
[27]
Kamishima, T.; Akaho, S.; Asoh, H.; and Sakuma, J. 2012. Fairness-aware classifier with prejudice remover regularizer. In ECML PKDD, 35-50. Springer.
[28]
Khaire, U. M.; and Dhanalakshmi, R. 2022. Stability of Feature Selection Algorithm: A Review. Journal of King Saud University - Computer and Information Sciences, 34(4): 1060-1073.
[29]
Kilbertus, N.; Carulla, M. R.; Parascandolo, G.; Hardt, M.; Janzing, D.; and Schölkopf, B. 2017. Avoiding discrimination through causal reasoning. In Advances in Neural Information Processing Systems, 656-666.
[30]
Kleinberg, J.; Ludwig, J.; Mullainathan, S.; and Rambachan, A. 2018. Algorithmic fairness. In Aea papers and proceedings, volume 108, 22-27.
[31]
Komiyama, J.; Takeda, A.; Honda, J.; and Shimao, H. 2018. Nonconvex optimization for regression with fairness constraints. In International conference on machine learning, 2737-2746.
[32]
Linardatos, P.; Papastefanopoulos, V.; and Kotsiantis, S. 2020. Explainable ai: A review of machine learning interpretability methods. Entropy, 23(1): 18.
[33]
Makhlouf, K.; Zhioua, S.; and Palamidessi, C. 2021. On the applicability of machine learning fairness notions. ACM SIGKDD Explorations Newsletter, 23(1): 14-23.
[34]
Nezami, N.; Haghighat, P.; Gándara, D.; and Anahideh, H. 2024. Assessing Disparities in Predictive Modeling Outcomes for College Student Success: The Impact of Imputation Techniques on Model Performance and Fairness. Education Sciences, 14(2).
[35]
Panigutti, C.; Perotti, A.; Panisson, A.; Bajardi, P.; and Pedreschi, D. 2021. FairLens: Auditing black-box clinical decision support systems. Information Processing & Management, 58(5): 102657.
[36]
Rudin, C.; Chen, C.; Chen, Z.; Huang, H.; Semenova, L.; and Zhong, C. 2022. Interpretable machine learning: Fundamental principles and 10 grand challenges. Statistic Surveys, 16: 1-85.
[37]
Rudy, J. 2016. py-earth: a Python implementation of Jerome Friedman's multivariate adaptive regression splines.
[38]
Simoiu, C.; Corbett-Davies, S.; and Goel, S. 2017. The problem of infra-marginality in outcome tests for discrimination. The Annals of Applied Statistics, 11(3): 1193-1216.
[39]
Stiglic, G.; Kocbek, P.; Fijacko, N.; Zitnik, M.; Verbert, K.; and Cilar, L. 2020. Interpretability of machine learning-based prediction models in healthcare. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(5): e1379.
[40]
Stine, K. D. J. P. F. A. 2022. Impartial Predictive Modeling and the Use of Proxy Variables. arXiv:1608.00528.
[41]
Wang, T.; Rudin, C.; Doshi-Velez, F.; Liu, Y.; Klampfl, E.; and MacNeille, P. 2017. A bayesian framework for learning rule sets for interpretable classification. The Journal of Machine Learning Research, 18(1): 2357-2393.
[42]
Yu, R.; Li, Q.; Fischer, C.; Doroudi, S.; and Xu, D. 2020. Towards Accurate and Fair Prediction of College Success: Evaluating Different Sources of Student Data. International educational data mining society.
[43]
Zafar, M. B.; Valera, I.; Gomez Rodriguez, M.; and Gummadi, K. P. 2017. Fairness beyond disparate treatment & disparate impact: Learning classification without disparate mistreatment. In Proceedings of the 26th International Conference on World Wide Web, 1171-1180. International World Wide Web Conferences Steering Committee.
[44]
Zafar, M. B.; Valera, I.; Rodriguez, M. G.; and Gummadi, K. P. 2015. Fairness constraints: Mechanisms for fair classification. arXiv preprint arXiv:1507.05259.
[45]
Zahavy, T.; Ben-Zrihem, N.; and Mannor, S. 2016. Graying the black box: Understanding DQNs. In Balcan, M. F.; and Weinberger, K. Q., eds., Proceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, 1899-1908. New York, New York, USA: PMLR.
[46]
Zambaldi, V.; Raposo, D.; Santoro, A.; Bapst, V.; Li, Y.; Babuschkin, I.; Tuyls, K.; Reichert, D.; Lillicrap, T.; Lockhart, E.; Shanahan, M.; Langston, V.; Pascanu, R.; Botvinick, M.; Vinyals, O.; and Battaglia, P. 2018. Relational Deep Reinforcement Learning. arXiv:1806.01830.
[47]
Zehlike, M.; Bonchi, F.; Castillo, C.; Hajian, S.; Megahed, M.; and Baeza-Yates, R. 2017. Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, 1569-1578. ACM.
[48]
Zemel, R.; Wu, Y.; Swersky, K.; Pitassi, T.; and Dwork, C. 2013. Learning fair representations. In International Conference on Machine Learning, 325-333.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'24/IAAI'24/EAAI'24: Proceedings of the Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial Intelligence
February 2024
23861 pages
ISBN:978-1-57735-887-9

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 20 February 2024

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Mar 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media