[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1609/aaai.v37i1.25115guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Imperceptible adversarial attack via invertible neural networks

Published: 07 February 2023 Publication History

Abstract

Adding perturbations via utilizing auxiliary gradient information or discarding existing details of the benign images are two common approaches for generating adversarial examples. Though visual imperceptibility is the desired property of adversarial examples, conventional adversarial attacks still generate traceable adversarial perturbations. In this paper, we introduce a novel Adversarial Attack via Invertible Neural Networks (AdvINN) method to produce robust and imperceptible adversarial examples. Specifically, AdvINN fully takes advantage of the information preservation property of Invertible Neural Networks and thereby generates adversarial examples by simultaneously adding class-specific semantic information of the target class and dropping discriminant information of the original class. Extensive experiments on CIFAR-10, CIFAR-100, and ImageNet-1K demonstrate that the proposed AdvINN method can produce less imperceptible adversarial images than the state-of-the-art methods and AdvINN yields more robust adversarial examples with high confidence compared to other adversarial attacks.

References

[1]
Akhtar, N.; and Mian, A. S. 2018. Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey. IEEE Access, 6: 14410-14430.
[2]
Ardizzone, L.; Lüth, C.; Kruse, J.; Rother, C.; and Kothe, U. 2019. Guided image generation with conditional invertible neural networks. arXiv preprint arXiv:1907.02392.
[3]
Benz, P.; Zhang, C.; Imtiaz, T.; and Kweon, I. S. 2020. Double targeted universal adversarial perturbations. In Proceedings of the Asian Conference on Computer Vision.
[4]
Carlini, N.; and Wagner, D. 2017. Towards evaluating the robustness of neural networks. In 2017 ieee symposium on security and privacy (sp), 39-57. IEEE.
[5]
Cheng, K. L.; Xie, Y.; and Chen, Q. 2021. Iicnet: A generic framework for reversible image conversion. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 1991-2000.
[6]
Croce, F.; and Hein, M. 2019. Sparse and imperceivable adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4724-4732.
[7]
Das, N.; Shanbhogue, M.; Chen, S. T.; Hohman, F.; Li, S.; Chen, L.; Kounavis, M. E.; and Chau, D. H. 2018. Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression. In the 24th ACM SIGKDD International Conference.
[8]
Dinh, L.; Krueger, D.; and Bengio, Y. 2014. Nice: Nonlinear independent components estimation. arXiv preprint arXiv:1410.8516.
[9]
Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2016. Density estimation using real NVP. arXiv preprint arXiv:1605.08803.
[10]
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li, J. 2018. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference on computer vision and pattern recognition, 9185-9193.
[11]
Duan, R.; Chen, Y.; Niu, D.; Yang, Y.; Qin, A. K.; and He, Y. 2021. AdvDrop: Adversarial Attack to DNNs by Dropping Information. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 7506-7515.
[12]
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.
[13]
Guan, Z.; Jing, J.; Deng, X.; Xu, M.; Jiang, L.; Zhang, Z.; and Li, Y. 2022. DeepMIH: Deep Invertible Network for Multiple Image Hiding. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[14]
Guo, C.; Rana, M.; Cisse, M.; and Van Der Maaten, L. 2017. Countering adversarial images using input transformations. arXiv preprint arXiv:1711.00117.
[15]
Hendrycks, D.; Zhao, K.; Basart, S.; Steinhardt, J.; and Song, D. X. 2021. Natural Adversarial Examples. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 15257-15266.
[16]
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and Hochreiter, S. 2017. Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural information processing systems, 30.
[17]
Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger, K. Q. 2017. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4700-4708.
[18]
Huang, J.-J.; and Dragotti, P. L. 2021. LINN: Lifting inspired invertible neural network for image denoising. In 2021 29th European Signal Processing Conference (EU-SIPCO), 636-640. IEEE.
[19]
Huang, J.-J.; and Dragotti, P. L. 2022. WINNet: Wavelet-Inspired Invertible Network for Image Denoising. IEEE Transactions on Image Processing, 31: 4377-4392.
[20]
Huang, J.-J.; Liu, T.; Yang, Z.; Fu, S.; Zhao, W.; and Dragotti, P. L. 2022. DURRNet: Deep Unfolded Single Image Reflection Removal Network. arXiv preprint arXiv:2203.06306.
[21]
Huang, Y.-C.; Chen, Y.-H.; Lu, C.-Y.; Wang, H.-P.; Peng, W.-H.; and Huang, C.-C. 2021. Video Rescaling Networks with Joint Optimization Strategies for Downscaling and Upscaling. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 3527-3536.
[22]
Jacobsen, J.-H.; Smeulders, A.; and Oyallon, E. 2018. i-RevNet: Deep Invertible Networks. In ICLR 2018-International Conference on Learning Representations.
[23]
Jia, S.; Ma, C.; Yao, T.; Yin, B.; Ding, S.; and Yang, X. 2022. Exploring Frequency Adversarial Attacks for Face Forgery Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4103-4112.
[24]
Jing, J.; Deng, X.; Xu, M.; Wang, J.; and Guan, Z. 2021. HiNet: Deep Image Hiding by Invertible Network. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 4713-4722.
[25]
Khrulkov, V.; and Oseledets, I. 2018. Art of Singular Vectors and Universal Adversarial Perturbations. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 8562-8570.
[26]
Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
[27]
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative flow with invertible 1x1 convolutions. Advances in neural information processing systems, 31.
[28]
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Adversarial machine learning at scale. arXiv preprint arXiv:1611.01236.
[29]
Lin, J.; Song, C.; He, K.; Wang, L.; and Hopcroft, J. E. 2019. Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks. In International Conference on Learning Representations.
[30]
Liu, Y.; Qin, Z.; Anwar, S.; Ji, P.; Kim, D.; Caldwell, S.; and Gedeon, T. 2021. Invertible Denoising Network: A Light Solution for Real Noise Removal. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 13365-13374.
[31]
Lu, S.-P.; Wang, R.; Zhong, T.; and Rosin, P. L. 2021. Large-capacity image steganography based on invertible neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 10816-10825.
[32]
Luo, C.; Lin, Q.; Xie, W.; Wu, B.; Xie, J.; and Shen, L. 2022. Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 15315-15324.
[33]
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and Vladu, A. 2018. Towards Deep Learning Models Resistant to Adversarial Attacks. In International Conference on Learning Representations.
[34]
Mallat, S. G. 1989. A theory for multiresolution signal decomposition: the wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7): 674693.
[35]
Mohaghegh Dolatabadi, H.; Erfani, S.; and Leckie, C. 2020. Advflow: Inconspicuous black-box adversarial attacks using normalizing flows. Advances in Neural Information Processing Systems, 33: 15871-15884.
[36]
Moosavi-Dezfooli, S.-M.; Fawzi, A.; Fawzi, O.; and Frossard, P. 2017. Universal Adversarial Perturbations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
[37]
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016. Deepfool: a simple and accurate method to fool deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2574-2582.
[38]
Naseer, M.; Khan, S.; Hayat, M.; Khan, F. S.; and Porikli, F. 2020. A self-supervised approach for adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 262-271.
[39]
Poursaeed, O.; Katsman, I.; Gao, B.; and Belongie, S. 2018. Generative adversarial perturbations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4422-4431.
[40]
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015. Imagenet large scale visual recognition challenge. International journal of computer vision, 115(3): 211-252.
[41]
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna, Z. 2016. Rethinking the inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2818-2826.
[42]
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I. J.; and Fergus, R. 2014. Intriguing properties of neural networks. In Bengio, Y.; and LeCun, Y., eds., 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.
[43]
Tian, Y.; Pan, J.; Yang, S.; Zhang, X.; He, S.; and Jin, Y. 2022. Imperceptible and Sparse Adversarial Attacks via a Dual-Population Based Constrained Evolutionary Algorithm. IEEE Transactions on Artificial Intelligence.
[44]
Wang, X.; He, X.; Wang, J.; and He, K. 2021. Admix: Enhancing the transferability of adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 16158-16167.
[45]
Wang, X.; Yu, K.; Wu, S.; Gu, J.; Liu, Y.; Dong, C.; Qiao, Y.; and Change Loy, C. 2018. Esrgan: Enhanced superresolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops, 0-0.
[46]
Wang, Z.; Bovik, A. C.; Sheikh, H. R.; and Simoncelli, E. P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 13(4): 600-612.
[47]
Xiao, C.; Li, B.; Zhu, J.-Y.; He, W.; Liu, M.; and Song, D. 2018. Generating adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610.
[48]
Xiao, M.; Zheng, S.; Liu, C.; Lin, Z.; and Liu, T.-Y. 2022. Invertible Rescaling Network and Its Extensions. International Journal of Computer Vision, 1-26.
[49]
Zhang, C.; Benz, P.; Imtiaz, T.; and Kweon, I. S. 2020. Understanding adversarial examples from the mutual influence of images and perturbations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 14521-14530.
[50]
Zhang, M.; Pan, Z.; Zhou, X.; and Kuo, C.-C. J. 2022. Enhancing Image Rescaling using Dual Latent Variables in Invertible Neural Network. In Proceedings of the 30th ACM International Conference on Multimedia, 5602-5610.
[51]
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang, O. 2018. The unreasonable effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on computer vision and pattern recognition, 586-595.
[52]
Zhao, R.; Liu, T.; Xiao, J.; Lun, D. P.; and Lam, K.-M. 2021. Invertible image decolorization. IEEE Transactions on Image Processing, 30: 6081-6095.
[53]
Zhao, Z.; Liu, Z.; and Larson, M. 2020. Towards large yet imperceptible adversarial image perturbations with perceptual color distance. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 1039-1048.
[54]
Zhao, Z.; Liu, Z.; and Larson, M. 2021. On Success and Simplicity: A Second Look at Transferable Targeted Attacks. In Ranzato, M.; Beygelzimer, A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., Advances in Neural Information Processing Systems, volume 34, 6115-6128. Curran Associates, Inc.
[55]
Zhu, X.; Li, Z.; Zhang, X.-Y.; Li, C.; Liu, Y.; and Xue, Z. 2019. Residual invertible spatio-temporal network for video super-resolution. In Proceedings of the AAAI conference on artificial intelligence, volume 33, 5981-5988.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
AAAI'23/IAAI'23/EAAI'23: Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence and Thirty-Fifth Conference on Innovative Applications of Artificial Intelligence and Thirteenth Symposium on Educational Advances in Artificial Intelligence
February 2023
16496 pages
ISBN:978-1-57735-880-0

Sponsors

  • Association for the Advancement of Artificial Intelligence

Publisher

AAAI Press

Publication History

Published: 07 February 2023

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media