[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes

Published: 01 January 2016 Publication History

Abstract

We consider linear cyclic codes with the locality property or locally recoverable codes LRC codes. A family of LRC codes that generalises the classical construction of Reed-Solomon codes was constructed in a recent paper by Tamo and Barg IEEE Transactions on Information Theory, No. 8, 2014. In this paper, we focus on distance-optimal cyclic codes that arise from this construction. We give a characterisation of these codes in terms of their zeros and observe that there are many equivalent ways of constructing optimal cyclic LRC codes over a given field. We also study subfield subcodes of cyclic LRC codes BCH-like LRC codes and establish several results about their locality and minimum distance. The locality parameter of a cyclic code is related to the dual distance of this code, and we phrase our results in terms of upper bounds on the dual distance.

References

[1]
Cadambe, V. and Mazumdar, A. (2015) 'Upper bounds on the size of locally recoverable codes', IEEE Transactions on Information Theory, Vol. 61, No. 8, pp.5787-5794.
[2]
Delsarte, P. (1975) 'On subfield subcodes of modified Reed-Solomon codes', IEEE Transactions on Information Theory, Vol. 21, No. 5, pp.575-576.
[3]
Ding, C. and Yang, J. (2013) 'Hamming weights in irreducible cyclic codes', Discrete Mathematics, Vol. 313, No. 4, pp.434-446.
[4]
Gopalan, P., Huang, C., Simitci, H. and Yekhanin, S. (2011) 'On the locality of codeword symbols', IEEE Transactions on Information Theory, Vol. 58, No. 11, pp.6925-6934.
[5]
Goparaju, S. and Calderbank, R. (2014) 'Binary cyclic codes that are locally repairable', Proc. 2014 IEEE Int. Sympos. Inform. Theory, Honolulu, HI, pp.676-680.
[6]
Hu, S., Tamo, I. and Barg, A. (2016) 'Combinatorial and LP bounds for LRC codes', Proc. 2016 IEEE International Symposium on Information Theory, Barcelona, Spain, July 10-15, 2016, pp.1008-1012.
[7]
Kamath, G.M., Prakash, N., Lalitha, V. and Kumar, P.V. (2014) 'Codes with local regeneration and erasure correction', IEEE Transactions on Information Theory, Vol. 60, No. 8, pp.4637-4660.
[8]
McEliece, R.J. (1974) 'Irreducible cyclic codes and Gauss sums', Combinatorics (Proc. NATO Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite geometry and coding theory, Math. Centre Tracts, Math. Centrum, Amsterdam, No. 55, pp.179-196.
[9]
Papailiopoulos, D.S. and Dimakis, A.G. (2012) 'Locally repairable codes', Proc. 2012 IEEE Int. Sympos. Inform. Theory, Boston, MA, pp.2771-2775.
[10]
Pellikaan, R. (1996) 'The shift bound for cyclic, Reed-Muller, and geometric Goppa codes', in Pellikaan, R., Perret, M. and Vladut, S.G. (Eds.): Arithmetic, Geometry and Coding Theory 4, Luminy 1993, Walter de Gruyter, Berlin, pp.155-174.
[11]
Prakash, N., Kamath, G.M., Lalitha, V. and Kumar, P.V. (2012) 'Optimal linear codes with a local-error-correction property', Proc. 2012 IEEE Internat. Sympos. Inform. Theory, Boston, MA, pp.2776-2780.
[12]
Rawat, A.S., Koyluoglu, O., Silberstein, N. and Vishwanath, S. (2014) 'Optimal locally repairable and secure codes for distributed storage systems', IEEE Transactions on Information Theory, Vol. 60, No. 1, pp.212-236.
[13]
Tamo, I. and Barg, A. (2014) 'A family of optimal locally recoverable codes', IEEE Transactions on Information Theory, Vol. 60, No. 8, pp.4661-4676.
[14]
Tamo, I., Barg, A. and Frolov, A. (2016) 'Bounds on the parameters of locally recoverable codes', IEEE Transactions on Information Theory, Vol. 62, No. 6, pp.3070-3083.
[15]
Tamo, I., Barg, A., Goparaju, S. and Calderbank, R. (2015) 'Cyclic LRC codes and their subfield subcodes', Proc. 2015 IEEE International Symposium on Information Theory, Hong Kong, China, 14-19 June 2015, pp.1262-1266.
[16]
Tamo, I., Papailiopoulos, D.S. and Dimakis, A.G. (2013) 'Optimal locally repairable codes and connections to matroid theory', Proc. 2013 IEEE Internat. Sympos. Inform. Theory, Istanbul, Turkey, pp.1814-1818.
[17]
van Lint, J.H. (1992) Introduction to Coding Theory, Vol. 86, Springer-Verlag, Berlin.
[18]
van Lint, J.H. and Wilson, R.M. (1986) 'On the minimum distance of cyclic codes', IEEE Transactions on Information Theory, Vol. 32, No. 1, pp.23-40.
[19]
Wang, A. and Zhang, Z. (2015) 'An integer programming based bound for locally repairable codes', IEEE Transactions on Information Theory, Vol. 61, No. 11, pp.5280-5294.

Cited By

View all
  1. Cyclic LRC codes, binary LRC codes, and upper bounds on the distance of cyclic codes

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image International Journal of Information and Coding Theory
      International Journal of Information and Coding Theory  Volume 3, Issue 4
      January 2016
      137 pages
      ISSN:1753-7703
      EISSN:1753-7711
      Issue’s Table of Contents

      Publisher

      Inderscience Publishers

      Geneva 15, Switzerland

      Publication History

      Published: 01 January 2016

      Author Tags

      1. binary LRC codes
      2. cyclic LRC codes
      3. distance-optimal cyclic codes
      4. dual distance
      5. irreducible cyclic codes
      6. locally recoverable codes
      7. subfield subcodes
      8. upper bounds

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Locally Repairable Convertible Codes With Optimal Access CostsIEEE Transactions on Information Theory10.1109/TIT.2024.343534670:9(6239-6257)Online publication date: 29-Jul-2024
      • (2024)New Lower Bounds for the Minimum Distance of Cyclic Codes and Applications to Locally Repairable CodesIEEE Transactions on Information Theory10.1109/TIT.2024.334956070:7(4968-4982)Online publication date: 4-Jan-2024
      • (2024)Optimal ternary locally repairable codesDesigns, Codes and Cryptography10.1007/s10623-024-01409-792:9(2685-2704)Online publication date: 1-Sep-2024
      • (2023)A Bound on the Minimal Field Size of LRCs, and Cyclic MR Codes That Attain ItIEEE Transactions on Information Theory10.1109/TIT.2022.322595369:4(2240-2260)Online publication date: 1-Apr-2023
      • (2023)New Optimal Linear Codes With Hierarchical LocalityIEEE Transactions on Information Theory10.1109/TIT.2022.321828069:3(1544-1550)Online publication date: 1-Mar-2023
      • (2022)A Bound on the Minimal Field Size of LRCs, and Cyclic MR Codes That Attain It2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834854(2625-2630)Online publication date: 26-Jun-2022
      • (2022)Optimal and Almost Optimal Cyclic (r,δ)-LRCs With Large Code Lengths2022 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT50566.2022.9834361(3126-3131)Online publication date: 26-Jun-2022
      • (2022)Optimal quaternary -locally recoverable codes: their structures and complete classificationDesigns, Codes and Cryptography10.1007/s10623-022-01165-691:4(1495-1526)Online publication date: 27-Dec-2022
      • (2022)On the locality of quasi-cyclic codes over finite fieldsDesigns, Codes and Cryptography10.1007/s10623-022-01009-390:3(759-777)Online publication date: 1-Mar-2022
      • (2021)On Optimal Quaternary Locally Repairable Codes2021 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT45174.2021.9518245(3267-3272)Online publication date: 12-Jul-2021
      • Show More Cited By

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media