[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Fast and robust semi-local stereo matching using possibility distributions

Published: 01 October 2011 Publication History

Abstract

Global stereo matching methods aim to reduce the sensibility of stereo correspondence to ambiguities caused by occlusions, poor local texture or fluctuation of illumination. However, when facing the problem of real-time stereo matching, as in robotic vision, local algorithms are known to be the best. In this paper, we propose a semi-local stereo matching algorithm (SLSM algorithm); an area-based method that embodies global matching constraints in the matching score. Our approach uses a fuzzy formularisation of the similarity assumption in order to define a matching possibility distribution. An unmatching possibility distribution is defined by applying global constraints to the matching possibility distribution. The final matching cost is computed using the two possibility distributions. Experimental results and comparison with other existing algorithms are presented to demonstrate the performance and effectiveness of our approach.

References

[1]
Belhumeur, P.N. (1996) 'A Bayesian approach to binocular stereopsis', Computer Vision, Vol. 19, No. 3, pp.237-260.
[2]
Bellman, R. (1957) Dynamic Programming, Princeton University Press, Princeton.
[3]
Bobick, A.F. and Intille, S.S. (1999) 'Bobick', International Journal of Computer Vision, Vol. 33, No. 3, pp.181-200.
[4]
Boykov, Y., Veksler, O. and Zabih, R. (1998) 'Markov random fields with efficient approximations', in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), pp.648-655.
[5]
Boykov, Y., Veksler, O. and Zabih, R. (1999) 'Fast approximate energy minimization via graph cuts', in Proceedings of International Conference on Computer Vision (ICCV), Vol. 1, pp.377-384.
[6]
Chen, Q. and Medioni, G. (1999) 'A volumetric stereo matching method: application to image based modeling', IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
[7]
Cox, I.J. (1992) 'Stereo without disparity gradient smoothing: a Bayesian sensor fusion solution', in Proceedings of British Machine Vision Conference (BMVC), pp.337-346.
[8]
Cox, I.J., Hingorani, S.L., Rao, S.B. and Maggs, B.M. (1996) 'A maximum likelihood stereo algorithm', Computer Vision and Image Understanding, Vol. 63, No. 3, pp.542-567.
[9]
Faugeras, O. (1993) Three-Dimensional Computer Vision: a Geometric Viewpoint, MIT Press, Cambridge, MA, USA.
[10]
Fusiello, A., Trucco, E. and Verri, A. (2000) 'A compact algorithm for rectification of stereo pairs', Machine Vision Appl., Vol. 12, No. 1, pp.16-32.
[11]
Hirschmüller, H. (2001) 'Improvements in real-time correlation-based stereo vision', Proceedings of the IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV), Sao Luis, Brazil, 21-23 September, pp.16-32.
[12]
Horn, B.K.P. (1986) Robot Vision, The MIT Press, Cambridge, MA, USA.
[13]
Ishikawa, H. and Geiger, D. (1998) 'Occlusions, discontinuities, and epipolar lines in stereo', in Proceedings of the 5th European Conference on Computer Vision (ECCV), Springer-Verlag, pp.232-248.
[14]
Julesz, B. (1962) 'Towards the automation of binocular depth perception', in IFIP Congress, pp.439-444.
[15]
Kolmogorov, V. and Zabih, R. (2001) 'Computing visual correspondence with occlusions using graph cuts', in Proceedings of the International Conference on Computer Vision (ICCV), pp.508-515.
[16]
Kolmogorov, V. and Zabih, R. (2002a) 'Multi-camera scene reconstruction via graph cuts', Proceedings of the 7th European Conference on Computer Vision (ECCV), Springer-Verlag pp.82-96.
[17]
Kolmogorov, V. and Zabih, R. (2002b) 'What energy functions can be minimized via graph cuts?', Proceedings of the 7th European Conference on Computer Vision (ECCV), Springer-Verlag pp.65-81.
[18]
Marr, D. (1982) Vision-A Computational Investigation into the Human Representation and Processing of Visual Information, The MIT Press, Cambridge, MA, USA.
[19]
Ohta, Y. and Kanade, T. (1985) 'Stereo by intra-and inter-scanline search using dynamic programming', in IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 7, No. 2, pp.139-154.
[20]
Olague, G., Fernández, F., Pérez, C. and Lutton, E. (2006) 'The infection algorithm: an artificial epidemic approach for dense stereo correspondence', Artificial Life, Vol. 12, No. 4, pp.593-615.
[21]
Roy, S. (1999) 'A maximum-flow formulation of the n-camera stereo correspondence problem', International Journal of Computer Vision, Vol. 34, Nos. 2-3, pp.147-161.
[22]
Roy, S. and Cox, I. (1998) 'Stereo without epipolar lines: a maximum-flow formulation', in Proceedings of the International Conference on Computer Vision (ICCV), pp.492-499.
[23]
Sára, R. (2002) 'Finding the largest unambiguous component of stereo matching', in Proceedings of the 7th European Conference on Computer Vision (ECCV), Springer-Verlag, pp.900-914.
[24]
Scharstein, D. (1998) 'Stereo matching with nonlinear diffusion', International Journal of Computer Vision, Vol. 28, No. 2, pp.155-174.
[25]
Scharstein, D. and Szeliski, R. (2002) 'A taxonomy and evaluation of dense two-frame stereo correspondence algorithms', International Journal of Computer Vision, Vol. 47, No. 1, pp.7-42.
[26]
Sun, J., Li, Y., Kang, S.B. and Shum, H.Y. (2005) 'Symmetric stereo matching for occlusion handling', IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
[27]
Trucco, E. and Verri, A. (1998) Introductory Techniques for 3D Computer Vision, Prentice Hall, Englewood Cliffs, NJ.
[28]
Veksler, O. (1999) 'Efficient graph-based energy minimization methods in computer vision', PhD thesis, Cornell University, Adviser: Ramin Zabih.
[29]
Yang, Q., Wang, L., Yang, R., Stewenius, H. and Nister D. (2006) 'Stereo matching with color-weighted correlation, hierarchical belief propagation and occlusion handling', CVPR, Vol. 2, pp.2347-2354.
[30]
Zitnick, L., Kang, S.B., Uyttendaele, M., Winder, S. and Szeliski, R. (2004) 'High-quality video view interpolation using a layered representation', SIGGRAPH, Vol. 2, pp.2347-2354.

Cited By

View all
  • (2016)Fuzzy Encoding Pattern for Stereo Matching CostIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2015.245573126:7(1215-1228)Online publication date: 7-Jul-2016
  1. Fast and robust semi-local stereo matching using possibility distributions

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image International Journal of Computational Vision and Robotics
      International Journal of Computational Vision and Robotics  Volume 2, Issue 3
      October 2011
      88 pages
      ISSN:1752-9131
      EISSN:1752-914X
      Issue’s Table of Contents

      Publisher

      Inderscience Publishers

      Geneva 15, Switzerland

      Publication History

      Published: 01 October 2011

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 08 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2016)Fuzzy Encoding Pattern for Stereo Matching CostIEEE Transactions on Circuits and Systems for Video Technology10.1109/TCSVT.2015.245573126:7(1215-1228)Online publication date: 7-Jul-2016

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media