[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Numerical weather model BRAMS evaluation on many-core architectures: a micro and macro vision

Published: 01 January 2016 Publication History

Abstract

This paper investigates the performance of a weather forecasting application Brazilian developments on the regional atmospheric modelling system - BRAMS on high performance computing HPC clusters with a multi-core architecture. We simulated atmosphere conditions over South America for 24 hours ahead using the BRAMS, aiming to understand the impact of different architectural configurations on performance and scalability. Our analyses consider execution in intra-node and inter-node configurations of a cluster with 24 cores per node. Results reveal differences in the BRAMS performance caused by interconnection. The BRAMS may get better performance by using a newer version of MPI library implementation one-copy schema and improving spatial resolution.

References

[1]
Bauer, M.A. (2007) 'High performance computing: the software challenges', in Proceedings of the 2007 International Workshop on Parallel Symbolic Computation, pp. 11-12.
[2]
Bergstrom, L. (2011) 'Measuring NUMA effects with the STREAM benchmark' [online] http://arxiv.org/abs/1103.3225 (accessed 10 June 2013).
[3]
Bonatti, J.P. (1996) 'Modelo de circulação geral atmosférico do CPTEC', in Climanálise Especial, edição comemorativa de10 anos.
[4]
BRAMS (2013) [online] http://www.cptec.inpe.br/brams (accessed 12 June 2013).
[5]
Carter, J., He, Y., Shalf, J., Shan, H., Strohmaier, E. and Wasserman, H. (2007) The performance Effect of Multicore on Scientific Applications, Lawrence Berkeley National Laboratory Paper (LBNL-62662) [online] http://escholarship.org/uc/item/7tb957z8.pdf (accessed 5 June 2013).
[6]
Castro, C.L., Pielke, R.A. and Leoncini, G. (2005) 'Dynamical downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS)', in Journal of Geophysical Research: Atmospheres, Atmospheres (1984-2012), Vol. 110, No. D5.
[7]
Chai, L., Gao, Q. and Panda, D.K. (2007) 'Understanding the impact of multi-core architecture in cluster computing: a case study with intel dual-core system', in Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGRID 2007), pp. 471-478.
[8]
Conway, P., Kalyanasundharam, N., Donley, G., Lepak, K. and Hughes, B. (2010) 'Cache hierarchy and memory subsystem of the AMD Opteron Processor', in Micro, IEEE, Vol. 30, No. 2, pp. 16-29.
[9]
David, J., Richet, J., Boyer, E., Anastopoulos, N., Collet, G., Verdière, G.C., Olmen, T., Ouvrard, H., Cocquebert, C., Frogé, B., Haritatos, A., Nikas, K. and Gkountouvas, T. (2013) Best Practice Guide - Curie, Version 1.16, Partnership for Advanced Computing in Europe (PRACE) [online] http://www.prace-ri.eu/Best-Practice-Guide-Curie-HTML (accessed 18 September 2013).
[10]
de Almeida, E.S., Bauer, M. and Fazenda, A.L. (2011) 'Evaluation of HPC architectures for BRAMS numerical weather model', in Proceedings of the 2011 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA-11), pp. 255-261.
[11]
Dennis, J.M. and Loft, R.D. (2011) 'Refactoring scientific applications for massive parallelism', in Numerical Techniques for Global Atmospheric Models, pp. 539-556, Springer Berlin Heidelberg (Lecture Notes in Computational Science and Engineering).
[12]
Dongarra, J. and Lastovetsky. A.L. (2009) High Performance Heterogeneous Computing, Wiley-Interscience, New York, NY, USA.
[13]
Eager, D.L., Zahorjan, J. and Lazowska, E.D. (1989) 'Speedup versus efficiency in parallel systems', in IEEE Transactions on Computers, Vol. 38, No. 3, pp. 408-423.
[14]
Fazenda, A.L., Moreira, D., Enari, E.H., Panetta J. and Rodrigues, L.F. (2006) 'First time user's guide (BRAMS version 3.2)', Cachoeira Paulista, 24p.
[15]
Fazenda, A.L., Panetta, J., Katsurayama, D.M., Rodrigues, L.F., Motta, L. and Navaux, P. (2011) 'Challenges and solutions to improve the scalability of an operational regional meteorological forecasting model', in International Journal of High Performance Systems Architecture, Vol. 3, No. 2, pp. 87-97.
[16]
Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M., Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J., Graham, R.L. and Woodall, T.S. (2004) 'Open MPI: goals, concept, and design of a next generation MPI implementation', in Recent Advances in Parallel Virtual Machine and Message Passing Interface, pp. 97-104.
[17]
Goglin, B. and Moreaud, S. (2012) 'KNEM: a generic and scalable kernel-assisted intra-node MPI communication framework', Journal of Parallel and Distributed Computing, Vol. 73, No. 2, pp. 176-188.
[18]
Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996) 'A high-performance, portable implementation of the MPI message passing interface standard', in Parallel Computing, Vol. 22, No. 6, pp. 789-828.
[19]
Huang, B., Bauer M. and Katchabaw, M. (2005) 'Hpcbench - a Linux-based network benchmark for high performance networks', in 19th International Symposium on High Performance Computing Systems and Applications (HPCS '05), pp. 65-71.
[20]
Intel MPI Benchmarks [online] http://software.intel.com/enus/articles/intel-mpi-benchmarks/ (accessed 10 December 2012).
[21]
Koziar, C., Reilein, R. and Runger, G. (2005) 'Load imbalance aspects in atmosphere simulations', International Journal of Computational Science and Engineering, Vol. 1, No. 2, pp. 215-225.
[22]
Lagzi, I., Turanyi, T. and Lovas, R. (2009) 'Development of a grid enabled chemistry application', International Journal of Computational Science and Engineering, Vol. 4, No. 3, pp. 195-203.
[23]
Langkamp, T. and Böhner, J. (2011) 'Influence of the compiler on multi-CPU performance of WRFv3', in Geoscientific Model Development Discussions, No. 4, pp. 611-623.
[24]
Lee, T.Y. and Hong, S.Y. (2005) 'Physical parameterization in next-generation NWP models', in Bulletin of the American Meteorological Society, Vol. 86, No. 11, pp. 1615-1618.
[25]
Leiserson, C.E. (1985) 'Fat-trees: universal networks for hardware-efficient supercomputing', in IEEE Transactions on Computers, Vol. 100, No. 10, pp. 892-901.
[26]
Levesque, J., Larkin, J., Foster, M., Glenski, J., Geissler, G., Whalen, S. et al. (2007) Understanding and Mitigating Multicore Performance Issues on the AMD Opteron Architecture, Lawrence Berkeley National Laboratory (LBNL-62500) [online] http://escholarship.org/uc/item/9k38d8ms (accessed 5 June 2013).
[27]
Liu, J., Chandrasekaran, B., Wu, J., Jiang, W., Kini, S., Yu, W., Buntinas, D., Wyckoff, P. and Panda, D.K. (2003) 'Performance comparison of MPI implementations over InfiniBand, Myrinet and Quadrics', in Supercomputing ACM/IEEE Conference, p. 58.
[28]
Lynch, P. (2008) 'The origins of computer weather prediction and climate modeling', in Journal of Computational Physics, Vol. 227, No. 7, pp. 3431-3444.
[29]
Ma, T., Bosilca, G., Bouteiller, A. and Dongarra, J.J. (2010) 'Locality and topology aware intra-node communication among multicore CPUs', in Recent Advances in the Message Passing Interface, pp. 265-274.
[30]
Ma, T., Bosilca, G., Bouteiller, A., Goglin, B., Squyres, J.M. and Dongarra, J.J. (2011) 'Kernel assisted collective intra-node MPI communication among multi-core and many-core CPUs', in International Conference on Parallel Processing (ICPP), pp. 532-541.
[31]
Moab HPC Suite [online] http://www.adaptivecomputing.com/products/hpcproducts/moab-hpc-basic-edition/ (accessed 22 June 2013).
[32]
Open MPI: Open Source High Performance Computing [online] http://www.open-mpi.org/doc/ (accessed 22 July 2013).
[33]
Pielke, R., Cotton, W., Walko, R., Tremback, C., Lyons, W., Grasso, L., Nicholls, M., Moran, M., Wesley, D., Lee, T. and Copeland, J. (1992) 'A comprehensive meteorological modeling system - RAMS', in Meteorology and Atmospheric Physics, Vol. 49, Nos. 1-4, pp. 69-91.
[34]
Ribeiro, C.P., Mehaut, J.F., Carissimi, A., Castro, M. and Fernandes, L.G. (2009) 'Memory affinity for hierarchical shared memory multiprocessors', in 21st International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD '09), pp. 59-66.
[35]
Roe, K. and Stevens, D. (2010) 'Maximizing multicore performance of the weather research and forecast model over the Hawaiian Islands', in Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference, p. E66.
[36]
Roebber, P.J., Schultz, D.M., Colle, B.A. and Stensrud, D.J. (2004) 'Toward improved prediction: High-resolution and ensemble modeling systems in operations', in Weather and Forecasting, Vol. 19, No. 5, pp. 936-949.
[37]
Shainer, G., Liu, T., Michalakes, J. and Liberman, J. (2009) 'Weather research and forecast (WRF) model performance and profiling analysis on advanced multi-core HPC clusters', in The 10th LCI International Conference on High-Performance Clustered Computing (ICHPCC).
[38]
Strazdins, P.E., Kahn, M., Henrichs, J., Pugh, T. and Rezny, M. (2011) 'Profiling methodology and performance tuning of the met office unified model for weather and climate simulations', in 25th IEEE International Parallel and Distributed Processing Workshops and PhD Forum (IPDPSW), pp. 1322-1331.
[39]
Sturmer, M., Treibig, J. and Rude, U. (2008) 'Optimising a 3D multigrid algorithm for the IA-64 architecture', International Journal of Computational Science and Engineering, Vol. 4, No. 1, pp. 29-35.
[40]
TORQUE Resource Manager [online] http://www.adaptivecomputing.com/products/opensource/torque/ (accessed 22 June 2013).
[41]
Wright, N.J., Pfeiffer, W. and Snavely, A. (2009) 'Characterizing parallel scaling of scientific applications using IPM', in Proc. of the 10th LCI International Conference on High-Performance Clustered Computing, pp. 10-12.

Cited By

View all
  • (2018)Predicting rainfall using neural netsInternational Journal of Computational Science and Engineering10.5555/3292834.329283517:4(353-364)Online publication date: 20-Dec-2018
  • (2018)Automatic identification and classification of Palomar Transient Factory astrophysical objects in GLADEInternational Journal of Computational Science and Engineering10.1504/IJCSE.2018.1001495516:4(337-349)Online publication date: 20-Dec-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Computational Science and Engineering
International Journal of Computational Science and Engineering  Volume 12, Issue 4
January 2016
105 pages
ISSN:1742-7185
EISSN:1742-7193
Issue’s Table of Contents

Publisher

Inderscience Publishers

Geneva 15, Switzerland

Publication History

Published: 01 January 2016

Author Tags

  1. BRAMS
  2. HPC
  3. high performance computing
  4. meteorology
  5. multicore architectures
  6. numerical weather prediction
  7. parallel processing
  8. performance evaluation
  9. regional atmospheric modelling
  10. simulation
  11. weather forecasting

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Predicting rainfall using neural netsInternational Journal of Computational Science and Engineering10.5555/3292834.329283517:4(353-364)Online publication date: 20-Dec-2018
  • (2018)Automatic identification and classification of Palomar Transient Factory astrophysical objects in GLADEInternational Journal of Computational Science and Engineering10.1504/IJCSE.2018.1001495516:4(337-349)Online publication date: 20-Dec-2018

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media