[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Adaptive work placement for query processing on heterogeneous computing resources

Published: 01 March 2017 Publication History

Abstract

The hardware landscape is currently changing from homogeneous multi-core systems towards heterogeneous systems with many different computing units, each with their own characteristics. This trend is a great opportunity for data-base systems to increase the overall performance if the heterogeneous resources can be utilized efficiently. To achieve this, the main challenge is to place the right work on the right computing unit. Current approaches tackling this placement for query processing assume that data cardinalities of intermediate results can be correctly estimated. However, this assumption does not hold for complex queries. To overcome this problem, we propose an adaptive placement approach being independent of cardinality estimation of intermediate results. Our approach is incorporated in a novel adaptive placement sequence. Additionally, we implement our approach as an extensible virtualization layer, to demonstrate the broad applicability with multiple database systems. In our evaluation, we clearly show that our approach significantly improves OLAP query processing on heterogeneous hardware, while being adaptive enough to react to changing cardinalities of intermediate query results.

References

[1]
D. Abadi, P. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The Design and Implementation of Modern Column-Oriented Database Systems. In Foundations and Trends in Databases, volume 5, pages 197--280, 2013.
[2]
J. Antony, P. P. Janes, and A. P. Rendell. Exploring Thread and Memory Placement on NUMA Architectures: Solaris and Linux, UltraSPARC/FirePlane and Opteron/Hypertransport. In Proceedings of HiPC, pages 338--352, 2006.
[3]
P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the Memory Wall in MonetDB. Communications ACM, 51(12):77--85, Dec. 2008.
[4]
P. A. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-Pipelining Query Execution. In CIDR:225--237, 2005.
[5]
S. Breß. The Design and Implementation of CoGaDB: A Column-oriented GPU-accelerated DBMS. Datenbank-Spektrum, 14(3):199--209, 2014.
[6]
S. Breß and G. Saake. Why It is Time for a HyPE: A Hybrid Query Processing Engine for Efficient GPU Coprocessing in DBMS. Proc. VLDB Endow., 6(12):1398--1403, Aug. 2013.
[7]
A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, Adaptive Placement Schemes for Non-uniform Requirements. In Proceedings of SPAA, pages 53--62. ACM, 2002.
[8]
S. Christodoulakis. Implications of Certain Assumptions in Database Performance Evaluation. ACM Trans. Database Syst., 9(2):163--186, June 1984.
[9]
A. Deshpande, Z. Ives, and V. Raman. Adaptive Query Processing. Found. Trends databases, 1(1):1--140, Jan. 2007.
[10]
H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and the end of multicore scaling. In Proceedings of ISCA, pages 365--376. ACM, 2011.
[11]
B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V. Sander. Relational Query Coprocessing on Graphics Processors. ACM Trans. Database Syst., 34(4):21:1--21:39, Dec. 2009.
[12]
B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju, Q. Luo, and P. Sander. Relational Joins on Graphics Processors. In Proceedings of the 2008 ACM SIGMOD, SIGMOD '08, pages 511--524, New York, NY, USA, 2008. ACM.
[13]
J. He, S. Zhang, and B. He. In-cache Query Co-processing on Coupled CPU-GPU Architectures. Proc. VLDB Endow., 8(4):329--340, Dec. 2014.
[14]
M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. Hardware-oblivious Parallelism for In-memory Column-stores. Proc. VLDB Endow., 6(9):709--720, July 2013.
[15]
Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join results. In Proceedings of ACM SIGMOD, pages 268--277. ACM, 1991.
[16]
S. Jha, B. He, M. Lu, X. Cheng, and H. P. Huynh. Improving Main Memory Hash Joins on Intel Xeon Phi Processors: An Experimental Approach. Proc. VLDB Endow.:642--653, 2015.
[17]
T. Karnagel, D. Habich, and W. Lehner. Local vs. Global Optimization: Operator Placement Strategies in Heterogeneous Environments. In Proceedings of the Workshops of the EDBT/ICDT, pages 48--55, 2015.
[18]
T. Karnagel, D. Habich, B. Schlegel, and W. Lehner. Heterogeneity-Aware Operator Placement in Column-Store DBMS. Datenbank-Spektrum, 14(3):211--221, 2014.
[19]
V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: a NUMA-aware query evaluation framework for the many-core age. In Proceedings of the 2014 ACM SIGMOD, pages 743--754. ACM, 2014.
[20]
V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and T. Neumann. How Good Are Query Optimizers, Really? Proc. VLDB Endow., 9(3):204--215, Nov. 2015.
[21]
B. Lepers, V. Quéma, and A. Fedorova. Thread and Memory Placement on NUMA Systems: Asymmetry Matters. In Proceedings of the 2015 USENIX, pages 277--289, 2015.
[22]
S. Meraji, B. Schiefer, L. Pham, L. Chu, P. Kokosielis, A. Storm, W. Young, C. Ge, G. Ng, and K. Kanagaratnam. Towards a Hybrid Design for Fast Query Processing in DB2 with BLU Acceleration Using Graphical Processing Units: A Technology Demonstration. In Proceedings of SIGMOD, pages 1951--1960. ACM, 2016.
[23]
R. Mueller, J. Teubner, and G. Alonso. Data Processing on FPGAs. Proc. VLDB Endow., 2(1):910--921, Aug. 2009.
[24]
T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proc. VLDB Endow., 4(9):539--550, 2011.
[25]
P. ONeil, E. ONeil, X. Chen, and S. Revilak. The star schema benchmark and augmented fact table indexing. In Technology Conference on Performance Evaluation and Benchmarking, pages 237--252. Springer, 2009.
[26]
K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang. Concurrent Analytical Query Processing with GPUs. Proc. VLDB Endow., 7(11):1011--1022, July 2014.
[27]
Y.-P. You, H.-J. Wu, Y.-N. Tsai, and Y.-T. Chao. VirtCL: A Framework for OpenCL Device Abstraction and Management. In Proceedings of PPoPP, pages 161--172. ACM, 2015.
[28]
Y. Yuan, R. Lee, and X. Zhang. The Yin and Yang of Processing Data Warehousing Queries on GPU Devices. Proc. VLDB Endow., 6(10):817--828, Aug. 2013.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 10, Issue 7
March 2017
132 pages
ISSN:2150-8097
Issue’s Table of Contents

Publisher

VLDB Endowment

Publication History

Published: 01 March 2017
Published in PVLDB Volume 10, Issue 7

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)32
  • Downloads (Last 6 weeks)2
Reflects downloads up to 08 Mar 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Scaling your Hybrid CPU-GPU DBMS to Multiple GPUsProceedings of the VLDB Endowment10.14778/3704965.370497717:13(4709-4722)Online publication date: 1-Sep-2024
  • (2024)Workload Placement on Heterogeneous CPU-GPU SystemsProceedings of the VLDB Endowment10.14778/3685800.368584517:12(4241-4244)Online publication date: 8-Nov-2024
  • (2024)Heterogeneous Intra-Pipeline Device-Parallel AggregationsProceedings of the 20th International Workshop on Data Management on New Hardware10.1145/3662010.3663441(1-10)Online publication date: 10-Jun-2024
  • (2024)SIMDified Data Processing - Foundations, Abstraction, and Advanced TechniquesCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3654694(613-621)Online publication date: 9-Jun-2024
  • (2024)ML-Based Dynamic Operator-Level Query Mapping for Stream Processing Systems in Heterogeneous Computing Environments2024 IEEE International Conference on Cluster Computing (CLUSTER)10.1109/CLUSTER59578.2024.00027(226-237)Online publication date: 24-Sep-2024
  • (2024)On-The-Fly Data Distribution to Accelerate Query Processing in Heterogeneous Memory SystemsAdvances in Databases and Information Systems10.1007/978-3-031-70626-4_12(170-183)Online publication date: 28-Aug-2024
  • (2023)Declarative Sub-Operators for Universal Data ProcessingProceedings of the VLDB Endowment10.14778/3611479.361153916:11(3461-3474)Online publication date: 1-Jul-2023
  • (2023)Accelerating User-Defined Aggregate Functions (UDAF) with Block-wide Execution and JIT Compilation on GPUsProceedings of the 19th International Workshop on Data Management on New Hardware10.1145/3592980.3595307(19-26)Online publication date: 18-Jun-2023
  • (2023)Secure query processing and optimization in cloud environment: a reviewInformation Security Journal: A Global Perspective10.1080/19393555.2023.227097633:2(172-191)Online publication date: 20-Dec-2023
  • (2022)Orchestrating data placement and query execution in heterogeneous CPU-GPU DBMSProceedings of the VLDB Endowment10.14778/3551793.355180915:11(2491-2503)Online publication date: 1-Jul-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media