[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

On the spatiotemporal burstiness of terms

Published: 01 May 2012 Publication History

Abstract

Thousands of documents are made available to the users via the web on a daily basis. One of the most extensively studied problems in the context of such document streams is burst identification. Given a term t, a burst is generally exhibited when an unusually high frequency is observed for t. While spatial and temporal burstiness have been studied individually in the past, our work is the first to simultaneously track and measure spatiotemporal term burstiness. In addition, we use the mined burstiness information toward an efficient document-search engine: given a user's query of terms, our engine returns a ranked list of documents discussing influential events with a strong spatiotemporal impact. We demonstrate the efficiency of our methods with an extensive experimental evaluation on real and synthetic datasets.

References

[1]
E. Balas, V. Chvátal, and J. Nešetřil. On the maximum weight clique problem. Math. Oper. Res., 12:522--535, 1987.
[2]
N. Bansal and N. Koudas. Blogscope: spatio-temporal analysis of the blogosphere. In WWW, pages 1269--1270, 2007.
[3]
Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching trajectories by locations: an efficiency study. In SIGMOD, pages 255--266, 2010.
[4]
A. Dalli. System for spatio-temporal analysis of online news and blogs. In WWW, pages 929--930, 2006.
[5]
D. P. Dobkin, D. Gunopulos, and W. Maass. Computing the maximum bichromatic discrepancy, with applications to computer graphics and machine learning. J. Comput. Syst. Sci., 52:453--470, June 1996.
[6]
R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
[7]
G. P. C. Fung, J. X. Yu, P. S. Yu, and H. Lu. Parameter free bursty events detection in text streams. In VLDB, pages 181--192, 2005.
[8]
U. I. Gupta, D. T. Lee, and J. Y.-T. Leung. Efficient algorithms for interval graphs and circular-arc graphs. Networks, 12(4):459--467, 1982.
[9]
M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos. Indexing spatiotemporal archives. The VLDB Journal, 15(2):143--164, 2006.
[10]
Q. He, K. Chang, and E.-P. Lim. Using burstiness to improve clustering of topics in news streams. In ACM ICDM, pages 493--498, 2007.
[11]
Q. He, K. Chang, E.-P. Lim, and J. Zhang. Bursty feature representation for clustering text streams. In SDM, 2007.
[12]
H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in trajectory databases. PVLDB, pages 1068--1080, 2008.
[13]
J. M. Kleinberg. Bursty and hierarchical structure in streams. In KDD, pages 91--101, 2002.
[14]
T. Lappas, B. Arai, M. Platakis, D. Kotsakos, and D. Gunopulos. On burstiness-aware search for document sequences. In KDD, pages 477--486, 2009.
[15]
J.-G. Lee, J. Han, and X. Li. Trajectory outlier detection: A partition-and-detect framework. In ICDE, pages 140--149, 2008.
[16]
Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal moving object clusters. PVLDB, 3(1):723--734, 2010.
[17]
N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. W. Cheung. Mining, indexing, and querying historical spatiotemporal data. In KDD, pages 236--245, 2004.
[18]
M. Mathioudakis, N. Bansal, and N. Koudas. Identifying, attributing and describing spatial bursts. PVLDB, 3(1):1091--1102, 2010.
[19]
Q. Mei, C. Liu, H. Su, and C. Zhai. A probabilistic approach to spatiotemporal theme pattern mining on weblogs. In WWW, pages 533--542, 2006.
[20]
Y. Meng and M. H. Dunham. Efficient mining of emerging events in a dynamic spatiotemporal environment. In PAKDD, pages 750--754, 2006.
[21]
W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring subsequences. In ISBM, pages 234--241. AAAI Press, 1999.
[22]
T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake shakes twitter users: real-time event detection by social sensors. In WWW, pages 851--860, 2010.
[23]
J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling. Twitterstand: news in tweets. In SIGSPATIAL, pages 42--51, 2009.
[24]
K. Simon. A new simple linear algorithm to recognize interval graphs. In Computational Geometry-Methods, Algorithms and Applications, LNCS, 1991.
[25]
V. K. Singh, M. Gao, and R. Jain. Situation detection and control using spatio-temporal analysis of microblogs. In WWW, pages 1181--1182, 2010.
[26]
J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the past, the present, and the future in spatio-temporal. In ICDE, pages 202--213, 2004.
[27]
I. Tsoukatos and D. Gunopulos. Efficient mining of spatiotemporal patterns. In SSTD, pages 425--442, 2001.
[28]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. On-line discovery of flock patterns in spatio-temporal data. In SIGSPATIAL, pages 286--295, 2009.
[29]
M. R. Vieira, P. Bakalov, and V. J. Tsotras. Querying trajectories using flexible patterns. In EDBT, pages 406--417, 2010.
[30]
T. Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, 22(176):88--93, 1975.
[31]
M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying similarities, periodicities and bursts for online search queries. In SIGMOD Conference, pages 131--142, 2004.
[32]
C.-S. Wang and R. S. Chang. A parallel maximal cliques algorithm for interval graphs with applications. J. Inf. Sci. Eng., 13(4):649--663, 1997.
[33]
H. Yang, S. Parthasarathy, and S. Mehta. A generalized framework for mining spatio-temporal patterns in scientific data. In KDD, pages 716--721, 2005.
[34]
Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma. Mining interesting locations and travel sequences from gps trajectories. In WWW, pages 791--800, 2009.
[35]
Y. Zhu and D. Shasha. Efficient elastic burst detection in data streams. In KDD, pages 336--345, 2003.

Cited By

View all
  • (2023)Identification and Visualization of Spatial and Temporal Trends in Textile IndustryComputers, Materials & Continua10.32604/cmc.2023.02660774:2(4165-4181)Online publication date: 2023
  • (2022)Event detection in online social networkComputer Science Review10.1016/j.cosrev.2022.10050046:COnline publication date: 1-Nov-2022
  • (2022)Reverse spatial top-k keyword queriesThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-022-00759-932:3(501-524)Online publication date: 25-Jul-2022
  • Show More Cited By
  1. On the spatiotemporal burstiness of terms

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the VLDB Endowment
    Proceedings of the VLDB Endowment  Volume 5, Issue 9
    May 2012
    120 pages

    Publisher

    VLDB Endowment

    Publication History

    Published: 01 May 2012
    Published in PVLDB Volume 5, Issue 9

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Identification and Visualization of Spatial and Temporal Trends in Textile IndustryComputers, Materials & Continua10.32604/cmc.2023.02660774:2(4165-4181)Online publication date: 2023
    • (2022)Event detection in online social networkComputer Science Review10.1016/j.cosrev.2022.10050046:COnline publication date: 1-Nov-2022
    • (2022)Reverse spatial top-k keyword queriesThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-022-00759-932:3(501-524)Online publication date: 25-Jul-2022
    • (2021)A Bisubmodular Approach to Event Detection and Prediction in Multivariate Social GraphsIEEE Transactions on Computational Social Systems10.1109/TCSS.2020.29717568:1(161-170)Online publication date: Feb-2021
    • (2021)BusBeat: Early Event Detection with Real-Time Bus GPS TrajectoriesIEEE Transactions on Big Data10.1109/TBDATA.2018.28725327:2(371-382)Online publication date: 1-Jun-2021
    • (2020)SURGE: Continuous Detection of Bursty Regions Over a Stream of Spatial ObjectsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2019.291565432:11(2254-2268)Online publication date: 1-Nov-2020
    • (2019)Learning Dynamic Context Graphs for Predicting Social EventsProceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining10.1145/3292500.3330919(1007-1016)Online publication date: 25-Jul-2019
    • (2019)Gaussian Normalization: Handling Burstiness in Visual Data2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)10.1109/AVSS.2019.8909857(1-8)Online publication date: Sep-2019
    • (2019)Importance of Small Probability Events in Big Data: Information Measures, Applications, and ChallengesIEEE Access10.1109/ACCESS.2019.29265187(100363-100382)Online publication date: 2019
    • (2018)Enhancing Local Live Tweet Stream to Detect NewsProceedings of the 2nd ACM SIGSPATIAL Workshop on Analytics for Local Events and News10.1145/3282866.3282868(1-10)Online publication date: 6-Nov-2018
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media