[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Easily Computable Facets of the Knapsack Polytope

Published: 01 November 1989 Publication History

Abstract

It is known that facets and valid inequalities for the knapsack polytope P can be obtained by lifting a simple inequality derived from each minimal cover. We study the computational complexity of such lifting. In particular, we show that the task of computing a lifted facet can be accomplished in Ons where sn is the cardinality of the minimal cover. Also, for a lifted inequality with integer coefficients, we show that the dual tasks of recognizing whether the inequality is valid for P or is a facet of P can be done within the same time bound.

References

[1]
Balas, E. (1975). Facets of the Knapsack Polytope. Math. Programming 8 146-164.
[2]
Balas, E. and Zemel, E. (1978). Facets of the Knapsack Polytope from Minimal Covers, SIAM J. Appl. Math. 34, 1 119-148.
[3]
Balas, E. and Zemel, E. (1984). Lifting and Complementing Yields all the Facets of Positive Zero-One Programming Polytopes. R. W. Cottle, H. L. Kelmanson, and B. Korte (Eds), Mathematical Programming. Elsevier Science Publishers. North Holland, Amsterdam.
[4]
Crowder, H., Johnson, E. L. and Padberg, M. (1983). Solving Large Scale Zero-One Linear Programming Problems. Oper. Res. 5 803-834.
[5]
Grotschel, M. (1985). Polyhedral Combinatorics. M. O'hEigeartaigh, J. K. Lenstra and A. H. G. Rinnooy Kan (Eds.), Combinatorial Optimization--Annotated Bibliographies. Wiley (Interscience Publication), New York.
[6]
Grotschel, M. and Padberg, M. W. (1985). Polyhedral Algorithms. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The Travelling Salesman Problem. Wiley, Chichester.
[7]
Hammer, P. L., Johnson, E. L. and Peled, U. N. (1975). Facets or Regular 0-1 Polytopes. Math. Programming 8 179-206.
[8]
Hartvigsen, D. and Zemel, E. (1987). On the Computational Complexity of Lifted Inequalities for the Knapsack Problem. Northwestern University working paper.
[9]
Nemhauser, G. L. and Trotter, Jr., L. E. (1974). Properties of Vertex Packing and Independence System Polyhedra. Math. Programming 6 48-61.
[10]
Padberg, M. W. (1973). On the Facial Structure of Set Packing Polyhedra. Math Programming 5 198-216.
[11]
Padberg, M. W. (1975). A Note on Zero-One Programming. Oper. Res. 3 833-837.
[12]
Papadimitriou, C. H. and Wolfe, D. (1985). The Complexity of Facets Resolved. 26th Annual Sympos. Foundations Computer Sci., Portland, OR, October, 74-78.
[13]
Papadimitriou, C. H. and Yananakis, M. (1982). The Complexity of Facets (and Some Facets of Complexity). J. Comput. System Sci. 2 244-259.
[14]
Peled, U. N. (1977). Properties of Facets of Binary Polytopes. Ann. Discrete Math. 1 435-456.
[15]
Pollatschek, M. A., (1970). Algorithms for Weighted Graphs. PH.D thesis. Technion-Israel Institute of Technology.
[16]
Pulleyblank, W. R. (1982). Polyhedral Combinatorics. A. Bachem. M. Grotschel, B. Korte (Eds). Mathematical Programming: The Stale of the Art. Bonn. Springer, Berlin.
[17]
Wolsey, L. A. (1975). Faces of Linear Inequalities in 0-1 Variables. Math. Programming 8 165-178.
[18]
Zemel, E. (1978). Lifting the Facets of 0-1 Polytopes. Math. Programming 15 268-277.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Mathematics of Operations Research
Mathematics of Operations Research  Volume 14, Issue 4
November 1989
190 pages

Publisher

INFORMS

Linthicum, MD, United States

Publication History

Published: 01 November 1989

Author Tags

  1. facets
  2. knapsack
  3. lifting
  4. valid inequalities

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Lifting for the integer knapsack cover polyhedronJournal of Global Optimization10.1007/s10898-022-01252-x86:1(205-249)Online publication date: 7-Dec-2022
  • (2022)A combinatorial cut-and-lift procedure with an application to 0–1 second-order conic programmingMathematical Programming: Series A and B10.1007/s10107-021-01699-y196:1-2(115-171)Online publication date: 1-Nov-2022
  • (2021)Chance-Constrained Multiple Bin Packing Problem with an Application to Operating Room PlanningINFORMS Journal on Computing10.1287/ijoc.2020.101033:4(1661-1677)Online publication date: 9-Mar-2021
  • (2019)On lifted cover inequalitiesOperations Research Letters10.1016/j.orl.2018.12.00547:2(83-87)Online publication date: 1-Mar-2019
  • (2018)Optimization algorithms for the disjunctively constrained knapsack problemSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-016-2465-722:6(2025-2043)Online publication date: 1-Mar-2018
  • (2017)A polyhedral study on chance constrained program with random right-hand sideMathematical Programming: Series A and B10.1007/s10107-016-1103-6166:1-2(19-64)Online publication date: 1-Nov-2017
  • (2016)A polyhedral study on 0-1 knapsack problems with set packing constraintsOperations Research Letters10.1016/j.orl.2016.01.01144:2(243-249)Online publication date: 1-Mar-2016
  • (2016)Implicit cover inequalitiesJournal of Combinatorial Optimization10.1007/s10878-014-9812-331:3(1111-1129)Online publication date: 1-Apr-2016
  • (2014)An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading ConstraintsOperations Research10.1287/opre.2014.130762:5(1126-1141)Online publication date: 1-Oct-2014
  • (2014)Chance-Constrained Binary Packing ProblemsINFORMS Journal on Computing10.1287/ijoc.2014.059526:4(735-747)Online publication date: 1-Nov-2014
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media