[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Ergodicity of spike trains: when does trial averaging make sense?

Published: 01 June 2003 Publication History

Abstract

Neuronal information processing is often studied on the basis of spiking patterns. The relevant statistics such as firing rates calculated with the peri-stimulus time histogram are obtained by averaging spiking patterns over many experimental runs. However, animals should respond to one experimental stimulation in real situations, and what is available to the brain is not the trial statistics but the population statistics. Consequently, physiological ergodicity, namely, the consistency between trial averaging and population averaging, is implicitly assumed in the data analyses, although it does not trivially hold true. In this letter, we investigate how characteristics of noisy neural network models, such as single neuron properties, external stimuli, and synaptic inputs, affect the statistics of firing patterns. In particular, we show that how high membrane potential sensitivity to input fluctuations, inability of neurons to remember past inputs, external stimuli with large variability and temporally separated peaks, and relatively few contributions of synaptic inputs result in spike trains that are reproducible over many trials. The reproducibility of spike trains and synchronous firing are contrasted and related to the ergodicity issue. Several numerical calculations with neural network examples are carried out to support the theoretical results.

References

[1]
Abeles, M. (1982). Role of the cortical neuron: Integrator or coincidence detector? Israel Journal of Medical Science, 18, 83-92.
[2]
Abeles, M. (1991). Corticonics. Cambridge: Cambridge University Press.
[3]
Aertsen, A., Erb, M., & Palm, G. (1994). Dynamics of functional coupling in the cerebral cortex: An attempt at a model-based interpretation. Physica D, 75, 103-128.
[4]
Aertsen, A. M. H. J., Gerstein, G. L., Habib, M. K., & Palm, G. (1989). Dynamics of neuronal firing correlation: Modulation of "effective connectivity." J. Neurophsiol., 61(5), 900-917.
[5]
Aihara, K., & Tokuda, I. (2002). Possible neural coding with inter-event intervals of synchronous firing. Phys. Rev. E, 66, 026212.
[6]
Anderson, J. S., Lampl, I., Gillespie, D. C., & Ferster, D. (2000). The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science, 290, 1968-1972.
[7]
Araki, O., & Aihara, K. (2001). Dual information representation with stable firing rates and chaotic spatiotemporal spike patterns in a neural network model. Neural Computation, 13, 2799-2822.
[8]
Arieli, A., Sterkin, A., Grinvald, A., & Aertsen, A. (1996). Dynamics of ongoing activity: Explanation of the large variability in evoked cortical responses. Science, 273, 1868-1871.
[9]
Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R., & Warland, D. (1991). Reading a neural code. Science, 252, 1854-1857.
[10]
Bressloff, P. C., & Coombes, S. (2000). Dynamics of strongly coupled spiking neurons. Neural Computation, 12, 91-129.
[11]
Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci., 8, 183-208.
[12]
Bryant, H., L., & Segundo, J. P. (1976). Spike initiation by transmembrane current: A white-noise analysis. J. Physiol., 260, 279-314.
[13]
Bulsara, A. R., Lowen, S. B., & Rees, C. D. (1994). Cooperative behavior in the periodically modulated Wiener process: Noise-induced complexity in a model neuron. Phys. Rev. E, 49(6), 4989-5000.
[14]
Cecchi, G. A., Sigman, M., Alonso, J.-M., Martinez, L., & Chialvo, D., R. (2000). Noise in neurons is message dependent. Proc. Nat. Acad. Sci. USA, 97, 5557-5561.
[15]
Collins, J. J., Chow, C. C., & Imhoff, T. T. (1995). Stochastic resonance without tuning. Nature, 376, 236-238.
[16]
Diesmann, M., Gewaltig, M-O., & Aertsen, A. (1999). Stable propagation of synchronous spiking in cortical neural networks. Nature, 402, 529-533.
[17]
Douglass, J. K., Wilkens, L., Pantazelou, E., & Moss, F. (1993). Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365, 337-340.
[18]
Feng, J., Brown, D., & Li, G. (2000). Synchronization due to common pulsed input in Stein's model. Phys. Rev. E, 61(3), 2987-2995.
[19]
Fujii, H., Ito, H., Aihara, K., Ichinose, N., & Tsukada, M. (1996). Dynamical cell assembly hypothesis--theoretical possibility of spatio-temporal coding in the cortex. Neural Networks, 9(8), 1303-1350.
[20]
Gerstein, G. L., Bedenbaugh, P., & Aertsen, A. M. H. J. (1989). Neuronal assemblies. IEEE Trans. Biomedical Engineering, 36(1), 4-14.
[21]
Gerstner, W., & Kistler, W. M. (2002). Spiking neurons models. Cambridge: Cambridge University Press.
[22]
Gerstner, W., Ritz, R., & van Hemmen, J. L. (1993). Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern., 69, 503-515.
[23]
Gray, C. M., König, K., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature, 338, 334-337.
[24]
Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7, 307-337.
[25]
Hodgkin, A. L. (1948). The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol., 107, 165-181.
[26]
Hu, B., & Zhou, C. (2000). Phase synchronization in coupled nonidentical excitable systems and array-enhanced coherence resonance. Phys. Rev. E, 61(2), R1001-R1004.
[27]
Hunter, J. D., Milton, J. G., Thomas, P. J., & Cowan, J. D. (1998). Resonance effect for neural spike time reliability. J. Neurophysiol. 80, 1427-1438.
[28]
Inchiosa, M. E., & Bulsara, A. R. (1995). Nonlinear dynamic elements with noisy sinusoidal forcing: Enhancing resonance via nonlinear coupling. Phys. Rev. E, 52(1), 327-339.
[29]
Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. Int. J. Bifurcation and Chaos, 10(6), 1171-1266.
[30]
Keener, J., & Sneyd, J. (1998). Mathematical biology. New York: Springer-Verlag.
[31]
Kempter, R., Gerstner, W., van Hemmen, J., & Wagner, H. (1998). Extracting oscillations: Neuronal coincidence detection with noisy periodic spike input. Neural Computation, 10, 1987-2017.
[32]
Knight, B. W. (1972). Dynamics of encoding in a population of neurons. Journal of General Physiology, 59, 734-766.
[33]
König, P., Engel, A. K., & Singer, W. (1996). Integrator or coincidence detector? The role of the cortical neuron revisited. Trends in Neurosciences 19, 130-137.
[34]
Lindner, J. F., Meadows, B. K., & Ditto, W. L. (1995). Array enhanced stochastic resonance and spatiotemporal synchronization. Phys. Rev. Lett., 75(1), 3-6.
[35]
Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268, 1503-1506.
[36]
Masuda, N., & Aihara, K. (2002a). Spatiotemporal spike encoding of a continuous external signal. Neural Computation, 14, 1599-1628.
[37]
Masuda, N., & Aihara, K. (2002b). Bridging rate coding and temporal spike coding by effect of noise. Phys. Rev. Lett., 88(24), 248101.
[38]
Masuda, N., & Aihara, K. (2003a). Duality of rate coding and temporal spike coding in multilayered feedforward networks. Neural Computation, 15, 103-125.
[39]
Masuda, N., & Aihara, K. (2003b). Global and local synchrony of coupled neurons in small-world networks. Manuscript submitted for publication.
[40]
Mirollo, R. E., & Strogatz, S. H. (1990). Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math., 50(6), 1645-1662.
[41]
Mueller, R., & Herz, A. V. M. (1999). Content-addressable memory with spiking neurons. Phys. Rev. E, 59(3), 3330-3338.
[42]
Pikovsky, A. S., & Kurths, J. (1997). Coherence resonance in a noise-driven excitable system. Phys. Rev. Lett., 78(5), 775-778.
[43]
Prut, Y., Vaadia, E., Bergman, H., Haalman, I., Slovin, H., & Abeles, M. (1998). Spatiotemporal structure of cortical activity: Properties and behavioral relevance. J. Neurophysiol., 79, 2857-2874.
[44]
Ricciardi, L. M. (1977). Diffusion processes and related topics in biology. Berlin: Springer-Verlag.
[45]
Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci., 18(10), 3870-3896.
[46]
Shaw, G. L., Harth, E., & Scheibel, A. B. (1982). Cooperativity in brain function: Assemblies of approximately 30 neurons. Experimental Neurology, 77, 324-358.
[47]
Shaw, G. L., & Silverman, D. J. (1988). Simulations of the trion model and the search for the code of higher cortical processing. In R. M. J. Cotterill (Ed.), Computer simulation in brain science (pp. 189-209), Cambridge: Cambridge University Press.
[48]
Softky, W. R., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13(1), 334-350.
[49]
Steinmetz, P. N., Roy, A., Fitzgerald, P. J., Hsiao, S. S., Johnson, K., O., & Niebur, E. (2000). Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature, 404, 187-190.
[50]
Terman, D., & Wang, D. (1995). Global competition and local cooperation in a network of neural oscillators. Physica D, 81, 148-176.
[51]
Tsodyks, M. V., & Sejnowski, T. (1995). Rapid state switching in balanced cortical network models. Network, 6, 111-124.
[52]
Tuckwell, H. C. (1988). Introduction to theoretical neurobiology. Cambridge: Cambridge University Press.
[53]
Vaadia, E., Haalman, L., Abeles, M., Bergman, H., Prut, Y., Slovin, H., & Aertsen, A. (1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural events. Nature, 373, 515-518.
[54]
van Rossum, M. C. W., Turrigiano, G. G., & Nelson, S. B. (2002). Fast propagation of firing rates through layered networks of noisy neurons. J. Neurosci., 22(5), 1956-1966.
[55]
van Vreeswijk, C., & Sompolinsky, H. (1998). Chaotic balanced state in a model of cortical circuits. Neural Computation, 10, 1321-1371.
[56]
von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components. In C. E. Shannon & J. McCarthy (Eds.), Automata studies (pp. 43-98). Princeton, NJ: Princeton University Press.
[57]
Wang, Y., Chik, D. T. W., & Wang, Z. D. (2000). Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons. Phys. Rev. E, 61(1), 740-746.
[58]
Warzecha, A-K., & Egelhaaf, M. (1999). Variability in spike trains during constant and dynamic stimulation. Science, 283, 1927-1930.
[59]
Zhou, C., Kurths, J., & Hu, B. (2001). Array-enhanced coherence resonance: Nontrivial effects of heterogeneity and spatial independence of noise. Phys. Rev. Lett., 87(9), 098101.

Cited By

View all
  • (2019)Coding of Temporally Varying Signals in Networks of Spiking Neurons with Global Delayed FeedbackNeural Computation10.1162/089976605461568017:10(2139-2175)Online publication date: 6-Jan-2019
  • (2017)Automatic decoding of input sinusoidal signal in a neuron modelNeurocomputing10.1016/j.neucom.2017.06.029267:C(605-614)Online publication date: 6-Dec-2017

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Neural Computation
Neural Computation  Volume 15, Issue 6
June 2003
246 pages

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 June 2003

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Coding of Temporally Varying Signals in Networks of Spiking Neurons with Global Delayed FeedbackNeural Computation10.1162/089976605461568017:10(2139-2175)Online publication date: 6-Jan-2019
  • (2017)Automatic decoding of input sinusoidal signal in a neuron modelNeurocomputing10.1016/j.neucom.2017.06.029267:C(605-614)Online publication date: 6-Dec-2017

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media