[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Separate Neural Processing of Timbre Dimensions in Auditory Sensory Memory

Published: 01 November 2006 Publication History

Abstract

Timbre is a multidimensional perceptual attribute of complex tones that characterizes the identity of a sound source. Our study explores the representation in auditory sensory memory of three timbre dimensions (acoustically related to attack time, spectral centroid, and spectrum fine structure), using the mismatch negativity (MMN) component of the auditory event-related potential. MMN is elicited by a discriminable change in a sound sequence and reflects the detection of the discrepancy between the current stimulus and traces in auditory sensory memory. The stimuli used in the present study were carefully controlled synthetic tones. MMNs were recorded after changes along each of the three timbre dimensions and their combinations. Additivity of unidimensional MMNs and dipole modeling results suggest partially separate MMN generators for different timbre dimensions, reflecting their mainly separate processing in auditory sensory memory. The results expand to timbre dimensions a property of separation of the representation in sensory memory that has already been reported between basic perceptual attributes (pitch, loudness, duration, and location) of sound sources.

References

[1]
Alho, K. (1995). Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart MMNm elicited by sound changes. Ear & Hearing, 16 , 38-51.
[2]
American National Standards Institute. (1973). American National Standard psychoacoustical terminology . New York: American National Standards Institute.
[3]
Berger, K. W. (1964). Some factors in the recognition of timbre. Journal of the Acoustical Society of America, 36 , 1888-1891.
[4]
Caclin, A., McAdams, S., Smith, B. K., & Winsberg, S. (2005). Acoustic correlates of timbre space dimensions: A confirmatory study using synthetic tones. Journal of the Acoustical Society of America, 118 , 471-482.
[5]
Caclin, A., Menon, V., Krasnow, B., Mackenzie, K., Smith, B., & McAdams, S. (2003). fMRI correlates of timbre perception {Abstract}. Neuroimage, 19 , 61.
[6]
Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via an n-way generalization of Eckart-Young decomposition. Psychometrika, 35 , 283-319.
[7]
Clément, S., Demany, L., & Semal, C. (1999). Memory for pitch versus memory for loudness. Journal of the Acoustical Society of America, 106 , 2805-2811.
[8]
Cowan, N. (1984). On short and long auditory stores. Psychological Bulletin, 96 , 341-370.
[9]
Crummer, G. C., Walton, J. P., Wayman, J. W., Hantz, E. C., & Frisina, R. D. (1994). Neural processing of musical timbre by musicians, nonmusicians and musicians possessing absolute pitch. Journal of the Acoustical Society of America, 95 , 2720-2727.
[10]
Czigler, I., & Winkler, I. (1996). Preattentive auditory change detection relies on unitary sensory memory representations. NeuroReport, 7 , 2413-2417.
[11]
Deacon, D., Nousak, J. M., Pilotti, M., Ritter, W., & Yang, C. M. (1998). Automatic change detection: Does the auditory system use representations of individual stimulus features or gestalts? Psychophysiology, 35 , 413-419.
[12]
Deutsch, D. (1970). Tones and numbers: Specificity of interference in immediate memory. Science, 168 , 1604-1605.
[13]
Frodl-Bauch, T., Kathmann, N., Moller, H. J., & Hegerl, U. (1997). Dipole localization and test-retest reliability of frequency and duration mismatch negativity generator processes. Brain Topography, 10 , 3-8.
[14]
Giard, M. H., Lavikainen, J., Reinikainen, K., Perrin, F., Bertrand, O., Pernier, J., et al. (1995). Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. Journal of Cognitive Neuroscience, 7 , 133-143.
[15]
Giard, M. H., Perrin, F., Echallier, J. F., Thévenet, M., Froment, J. C., & Pernier, J. (1994). Dissociation of frontal and temporal components in the human auditory N1 wave: A scalp current density and dipole model analysis. Electroencephalography and Clinical Neurophysiology, 92 , 238-252.
[16]
Giard, M. H., Perrin, F., Pernier, J., & Bouchet, P. (1990). Brain generators implicated in the processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiology, 27 , 627-640.
[17]
Gomes, H., Bernstein, R., Ritter, W., Vaughan, H. G., Jr., & Miller, J. (1997). Storage of feature conjunctions in transient auditory memory. Psychophysiology, 34 , 712-716.
[18]
Gomes, H., Ritter, W., & Vaughan, H. G., Jr. (1995). The nature of preattentive storage in the auditory system. Journal of Cognitive Neuroscience, 7 , 81-94.
[19]
Goydke, K. N., Altenmüller, E., Möller, J., Münte, T. F. (2004). Changes in emotional tones and instrumental timbre are reflected by the mismatch negativity. Cognitive Brain Research, 21 , 351-359.
[20]
Grau, J. W., & Kemler-Nelson, D. G. (1988). The distinction between integral and separable dimensions: Evidence for integrality of pitch and loudness. Journal of Experimental Psychology: General, 117 , 347-370.
[21]
Grey, J. M. (1977). Multidimensional perceptual scaling of musical timbres. Journal of the Acoustical Society of America, 61 , 1270-1277.
[22]
Guthrie, D., & Buchwald, J. S. (1991). Significance testing of difference potentials. Psychophysiology, 28 , 240-244.
[23]
Hajda, J. M. (1999). The effect of time-variant acoustical properties on orchestral instrument timbres . Unpublished PhD thesis, University of California, Los Angeles.
[24]
Hajda, J. M., Kendall, R. A., Carterette, E. C., & Harschberger, M. L. (1997). Methodological issues in timbre research. In I. Deliège & J. Sloboda (Eds.), Perception and cognition of music (pp. 253-307). Hove, UK: Psychology Press.
[25]
Handel, S. (1995). Timbre perception and auditory object identification. In B. C. J. Moore (Ed.), Hearing (pp. 425-461). San Diego, CA: Academic Press.
[26]
Jacobsen, T., Schröger, E., Horenkamp, T., & Winkler, I. (2003). Mismatch negativity to pitch change: Varied stimulus proportions in controlling effects of neural refractoriness on human auditory event-related brain potentials. Neuroscience Letters, 344 , 79-82.
[27]
Johnsrude, I. S., Penhune, V. B., & Zatorre, R. J. (2000). Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain, 123 , 155-163.
[28]
Kendall, R. A., & Carterette, E. C. (1993a). Verbal attributes of simultaneous wind instruments timbres: I. von Bismarck's adjectives. Music Perception, 10 , 445-468.
[29]
Kendall, R. A., & Carterette, E. C. (1993b). Verbal attributes of simultaneous wind instruments timbres: II. Adjectives induced from Piston's orchestration. Music Perception, 10 , 469-502.
[30]
Krimphoff, J., McAdams, S., & Winsberg, S. (1994). Caractérisation du timbre des sons complexes. II. Analyses acoustiques et quantification psychophysique {Characterization of the timbre of complex sounds. II. Acoustical analyses and psychophysical quantification}. Journal de Physique, 4 , 625-628.
[31]
Krumhansl, C. L. (1989). Why is musical timbre so hard to understand? In S. Nielsen & O. Olsson (Eds.), Structure and perception of electroacoustic sound and music (pp. 43-53). Amsterdam: Elsevier.
[32]
Krumhansl, C. L., & Iverson, P. (1992). Perceptual interactions between musical pitch and timbre. Journal of Experimental Psychology, Human Perception and Performance, 18 , 739-751.
[33]
Levänen, S., Hari, R., McEvoy, L., & Sams, M. (1993). Responses of the human auditory cortex to changes in one versus two stimulus features. Experimental Brain Research, 97 , 177-183.
[34]
Loewy, D. H., Campbell, K. B., & Bastien, C. (1996). The mismatch negativity to frequency deviant during natural sleep. Electroencephalography and Clinical Neurophysiology, 98 , 493-501.
[35]
Lyytinen, H., Blomberg, A. P., & Näätänen, R. (1992). Event-related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology, 29 , 523-534.
[36]
Marozeau, J., de Cheveigné, A., McAdams, S., & Winsberg, S. (2003). The dependency of timbre on fundamental frequency. Journal of the Acoustical Society of America, 114 , 2946-2957.
[37]
McAdams, S. (1993). Recognition of sound sources and events. In S. McAdams & E. Bigand (Eds.), Thinking in sound: The cognitive psychology of human audition (pp. 146-198). Oxford: Oxford University Press.
[38]
McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., & Krimphoff, J. (1995). Perceptual scaling of synthesized musical timbres: Common dimensions, specificities and latent subject classes. Psychological Research, 58 , 177-192.
[39]
Melara, R. D., & Marks, L. E. (1990). Perceptual primacy of dimensions: Support for a model of dimensional interaction. Journal of Experimental Psychology: Human Perception & Performance, 16 , 398-414.
[40]
Menon, V. Levitin, D. J., Smith, B. K., Lembke, A., Krasnow, B. D., Glazer, D., et al. (2002). Neural correlates of timbre change in harmonic sounds. Neuroimage, 17 , 1742-1754.
[41]
Miller, J. R., & Carterette, E. C. (1975). Perceptual space for musical structures. Journal of the Acoustical Society of America, 58 , 711-720.
[42]
Milner, B. (1962). Laterality effects in audition. In V. B. Mountcastle (Ed.), Interhemispheric relations and cerebral dominance (pp. 177-195). Baltimore: Johns Hopkins Press.
[43]
Nousak, J. M., Deacon, D., Ritter, W., & Vaughan, H. G., Jr. (1996). Storage of information in transient auditory memory. Cognitive Brain Research, 4 , 305-307.
[44]
Novitski, N., Tervaniemi, M., Huotilainen, M., & Näätänen, R. (2004). Frequency discrimination at different frequency levels as indexed by electrophysiological and behavioral measures. Cognitive Brain Research, 20 , 26-36.
[45]
Näätänen, R., Gaillard, A. W. K., & Mantysalo, S. (1978). Early selective attention effect on evoked potential reinterpreted. Acta Psychologica, 42 , 313-329.
[46]
Näätänen, R., Schröger, E., Karakas, S., Tervaniemi, M., & Paavilainen, P. (1993). Development of a memory trace for a complex sound in the human brain. NeuroReport, 4 , 503-506.
[47]
Näätänen, R., & Winkler, I. (1999). The concept of auditory stimulus representation in cognitive neuroscience. Psychological Bulletin, 125 , 826-859.
[48]
Paavilainen, P., Valppu, S., &amp; Näätänen, R. (2001). The additivity of auditory feature analysis in the human brain as indexed by the mismatch negativity: 1+1-2 but 1+1+1<3. Neuroscience Letters, 301 , 179-182.
[49]
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L. E., &amp; Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392 , 811-814.
[50]
Pantev, C., Roberts, L. E., Schulz, M., Engelien, A., &amp; Ross, B. (2001). Timbre-specific enhancement of auditory cortical representations in musicians. NeuroReport, 12 , 169-174.
[51]
Ritter, W., Deacon, D., Gomes, H., Javitt, D. C., &amp; Vaughan, H. G., Jr. (1995). The mismatch negativity of event-related potentials as a probe of transient auditory memory: A review. Ear &amp; Hearing, 16 , 52-67.
[52]
Rosburg, T. (2003). Left hemispheric dipole locations of the neuromagnetic mismatch negativity to frequency, intensity and duration deviants. Cognitive Brain Research, 16 , 83-90.
[53]
Saldanha, E. L., &amp; Corso, J. F. (1964). Timbre cues and the identification of musical instruments. Journal of the Acoustical Society of America, 36 , 2021-2026.
[54]
Sams, M., Alho, K., &amp; Näätänen, R. (1984). Short-term habituation and dishabituation of the mismatch negativity of the ERP. Psychophysiology, 21 , 434-441.
[55]
Samson, S., &amp; Zatorre, R. J. (1994). Contribution of the right temporal lobe to musical timbre discrimination. Neuropsychologia, 32 , 231-240.
[56]
Samson, S., Zatorre, R. J., &amp; Ramsay, J. O. (1997). Multidimensional scaling of synthetic musical timbre: Perception of spectral and temporal characteristics. Canadian Journal of Experimental Psychology, 51 , 307-315.
[57]
Samson, S., Zatorre, R. J., &amp; Ramsay, J. O. (2002). Deficits of musical timbre perception after unilateral temporal-lobe lesion revealed with multidimensional scaling. Brain, 125 , 511-523.
[58]
Schröger, E. (1995a). Interaural time and level differences: Integrated or separated processing? Hearing Research, 96 , 191-198.
[59]
Schröger, E. (1995b). Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology, 32 , 55-65.
[60]
Semal, C., &amp; Demany, L. (1991). Dissociation of pitch from timbre in auditory short-term memory. Journal of the Acoustical Society of America, 89
[61]
Sinkkonen, J., &amp; Tervaniemi, M. (2000). Towards optimal recording and analysis of the mismatch negativity. Audiology &amp; Neuro-Otology, 5 , 235-246.
[62]
Sussman, E., Gomes, H., Nousak, J. M., Ritter, W., &amp; Vaughan, H. G., Jr. (1998). Feature conjunction and auditory sensory memory. Brain Research, 793 , 95-102.
[63]
Takegata, R., Brattico, E., Tervaniemi, M., Varyagina, O., Näätänen, R., &amp; Winkler, I. (2005). Preattentive representation of feature conjunctions for concurrent spatially distributed auditory objects. Cognitive Brain Research, 25 , 169-179.
[64]
Tervaniemi, M., Winkler, I., &amp; Näätänen, R. (1997). Pre-attentive categorization of sounds by timbre as revealed with event-related potentials. NeuroReport, 8 , 2571-2574.
[65]
Tiitinen, H., May, P., Reinikainen, K., &amp; Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature, 372 , 90-92.
[66]
Toiviainen, P., Tervaniemi, M., Louhivuori, J., Saher, M., Huotilainen, M., &amp; Näätänen, R. (1998). Timbre similarity: Convergence of neural, behavioral and computational approaches. Music Perception, 16 , 223-241.
[67]
von Bismarck, G. (1974). Timbre of steady sounds: A factorial investigation of its verbal attributes. Acustica, 30 , 159-192.
[68]
Winkler, I., Czigler, I., Jaramillo, M., Paavilainen, P., &amp; Näätänen, R. (1998). Temporal constraints of auditory events synthesis: Evidence from ERPs. NeuroReport, 9 , 495-499.
[69]
Winkler, I., Tervaniemi, M., Schröger, E., Wolff, C., &amp; Näätänen, R. (1998). Preattentive processing of auditory spatial information in humans. Neuroscience Letters, 242 , 49-52.
[70]
Winsberg, S., &amp; De Soete, G. (1993). A latent class approach to fitting the weighted euclidean model, CLASCAL. Psychometrika, 58 , 315-330.
[71]
Wolff, C., &amp; Schröger, E. (2001). Human preattentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neuroscience Letters, 311 , 37-40.

Cited By

View all
  • (2016)Smart environment architecture for emotion detection and regulationJournal of Biomedical Informatics10.1016/j.jbi.2016.09.01564:C(55-73)Online publication date: 1-Dec-2016
  • (2010)Unifying Conceptual SpacesMinds and Machines10.1007/s11023-010-9207-x20:4(503-532)Online publication date: 1-Nov-2010
  • (2009)What/when causal expectation modelling applied to audio signalsConnection Science10.1080/0954009090273376421:2-3(119-143)Online publication date: 1-Jun-2009
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Cognitive Neuroscience
Journal of Cognitive Neuroscience  Volume 18, Issue 12
December 2006
218 pages
ISSN:0898-929X
EISSN:1530-8898
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 November 2006

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)Smart environment architecture for emotion detection and regulationJournal of Biomedical Informatics10.1016/j.jbi.2016.09.01564:C(55-73)Online publication date: 1-Dec-2016
  • (2010)Unifying Conceptual SpacesMinds and Machines10.1007/s11023-010-9207-x20:4(503-532)Online publication date: 1-Nov-2010
  • (2009)What/when causal expectation modelling applied to audio signalsConnection Science10.1080/0954009090273376421:2-3(119-143)Online publication date: 1-Jun-2009
  • (2009)Timbre Perception of Sounds from Impacted MaterialsComputer Music Modeling and Retrieval. Genesis of Meaning in Sound and Music10.1007/978-3-642-02518-1_1(1-17)Online publication date: 7-Jun-2009
  • (2008)Odd sound processing in the sleeping brainJournal of Cognitive Neuroscience10.1162/jocn.2008.20.2.29620:2(296-311)Online publication date: 1-Feb-2008
  • (2008)Interactive processing of timbre dimensionsJournal of Cognitive Neuroscience10.1162/jocn.2008.20.1.4920:1(49-64)Online publication date: 1-Jan-2008

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media