[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

Some comments on evolutionary algorithm theory

Published: 01 December 1996 Publication History

Abstract

The development of a sound theory that predicts and verifies existing evolutionary algorithms (EA) is one of the most important research issues in the field today. In mathematical proofs, the assumption of spherical symmetry is probably one of the most widely used simplifications. This paper discusses the extent to which spherical symmetry is appropriate for certain EAs. It turns out that spherical symmetry leads to simplifications in (self-adaptive) EAs but seems inappropriate for certain genetic algorithm variants, since small mutation rates bias a search algorithm toward the coordinate axes. This paper also argues that current test suites are weak in that they do not provide problems with significant epistasis that describes the interaction between different parameters. Consequently, when using an empirical test for pushing existing theory beyond its limits, benchmark functions should include more epistatic interaction or at least should use coordinate rotations.

References

[1]
Altenberg, L. (1995). The schema theorem and the Price's theorem. In L. D. Whitley & M. D. Vose (Eds.), Foundations of genetic algorithms 3 (pp. 23-49). San Mateo, CA: Morgan Kaufmann.
[2]
Bäck, T. (1993). Optimal mutation rates in genetic search. In S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 2-8). San Mateo, CA: Morgan Kaufmann.
[3]
Beyer, H.-G. (1993). Toward a theory of evolution strategies: Some asymptotical results from the (1 ± ¿)-theory. Evolutionary Computation 1(2):165-188.
[4]
Beyer, H.-G. (1995). Toward a theory of evolution strategies: The (µ, ¿)-theory. Evolutionary Computation 2(4):381-407.
[5]
Beyer, H.-G. (1996). Toward a theory of evolution strategies: Self-adaptation. Evolutionary Computation 3(3):311-347.
[6]
Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison- Wesley.
[7]
Grefenstette, J. J., & Baker, J. E. (1989). How genetic algorithms work: A critical look at implicit parallelism. In J. D. Schaffer (Ed.), Proceedings of the International Conference on Genetic Algorithms ICGA3 (pp. 20-27). San Mateo, CA: Morgan Kaufmann.
[8]
Luenberger, D. G. (1984). Linear and nonlinear programming. Reading, MA: Addison-Wesley.
[9]
Mühlenbein, H., & Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic algorithm I. Evolutionary Computation 1 (1):25-50.
[10]
Ostermeier, A., Gawelczyk, A., & Hansen, N. (1994). A derandomized approach to self-adaptation of evolution strategies. Evolutionary Computation 2(4):369-380.
[11]
Rechenberg, I. (1973). Evolutionsstrategie. Stuttgart: Frommann-Holzboog Verlag.
[12]
Salomon, R. (1996a). Performance degradation of genetic algorithms under coordinate rotation. In L.J. Fogel, P.J. Angeline, & T. Bäck (Eds.), Proceedings of the Fifth Annual Conference on Evolutionary Programming. Cambridge, MA: MIT Press.
[13]
Salomon, R. (1996b). Implicit independence assumptions: A notorious problem for genetic algorithms. In P. G. Anderson & K. Warwick (Eds.), Proceedings of the International ICSC Symposia on Intelligent Industrial Automation and on Soft Computing (SOCO'96) (pp. B 93-B 99). Canada/Switzerland: ICSC Academic Press.
[14]
Schlierkamp-Voosen, D., & Mühlenbein, H. (1994). Strategy adaptation by competing subpoputations. In Y. Davidor, H.-P. Schwefel, & R. Männer (Eds.), Parallel Problem Solving from Nature (PPSN III) (pp. 199-208). Berlin: Springer-Verlag.
[15]
Schwefel, H. P. (1995). Evolution and optimum seeking. New York: John Wiley.
[16]
Srinivas, M., & Patnaik, L. (1994). Genetic algorithms: A survey. IEEE Computer 27(6), 17-26.
[17]
Vose, M. D. (1991). Generalizing the notion of schema in genetic algorithms. Artificial Intelligence 50, 385-396.

Cited By

View all
  • (2014)On rotationally invariant continuous-parameter genetic algorithmsAdvances in Engineering Software10.1016/j.advengsoft.2014.08.00678:C(52-59)Online publication date: 1-Dec-2014
  • (2008)A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifierApplied Soft Computing10.1016/j.asoc.2006.12.0058:1(350-370)Online publication date: 1-Jan-2008
  • (2007)Reference frame and scale invariant real-parameter genetic and differential evolution algorithmsProceedings of the 9th annual conference on Genetic and evolutionary computation10.1145/1276958.1277267(1538-1538)Online publication date: 7-Jul-2007
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Evolutionary Computation
Evolutionary Computation  Volume 4, Issue 4
Winter 1996
90 pages
ISSN:1063-6560
EISSN:1530-9304
Issue’s Table of Contents

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 December 1996
Published in EVOL Volume 4, Issue 4

Author Tags

  1. Evolutionary algorithm theory
  2. multimodal functions
  3. performance degradation
  4. search bias
  5. spherical symmetry

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)1
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2014)On rotationally invariant continuous-parameter genetic algorithmsAdvances in Engineering Software10.1016/j.advengsoft.2014.08.00678:C(52-59)Online publication date: 1-Dec-2014
  • (2008)A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifierApplied Soft Computing10.1016/j.asoc.2006.12.0058:1(350-370)Online publication date: 1-Jan-2008
  • (2007)Reference frame and scale invariant real-parameter genetic and differential evolution algorithmsProceedings of the 9th annual conference on Genetic and evolutionary computation10.1145/1276958.1277267(1538-1538)Online publication date: 7-Jul-2007
  • (1998)Tackling Real-Coded Genetic AlgorithmsArtificial Intelligence Review10.1023/A:100650490116412:4(265-319)Online publication date: 1-Aug-1998

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media