[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

One-Step Synthesis of Copper and Cupric Oxide Particles from the Liquid Phase by X-Ray Radiolysis Using Synchrotron Radiation

Published: 01 December 2016 Publication History

Abstract

The deposition of copper Cu and cupric oxide Cu4O3, Cu2O, and CuO particles in an aqueous copper sulfate CuSO4 solution with additive alcohol such as methanol, ethanol, 2-propanol, and ethylene glycol has been studied by X-ray exposure from synchrotron radiation. An attenuated X-ray radiation time of 5 min allows for the synthesis of Cu, Cu4O3, Cu2O, and CuO nano/microscale particles and their aggregation into clusters. The morphology and composition of the synthesized Cu/cupric oxide particle clusters were characterized by scanning electron microscopy, scanning transmission electron microscopy, and high-resolution transmission electron microscopy with energy dispersive X-ray spectroscopy. Micro-Raman spectroscopy revealed that the clusters comprised cupric oxide core particles covered with Cu particles. Neither Cu/cupric oxide particles nor their clusters were formed without any alcohol additives. The effect of alcohol additives is attributed to the following sequential steps: photochemical reaction due to X-ray irradiation induces nucleation of the particles accompanying redox reaction and forms a cluster or aggregates by LaMer process and DLVO interactions. The procedure offers a novel route to synthesize the Cu/cupric oxide particles and aggregates. It also provides a novel additive manufacturing process or lithography of composite materials such as metal, oxide, and resin.

References

[1]
Kreibig U., Vollmer M., Optical Properties of Metal Clusters 1995 Volume 25 Springer Springer Series in Material Science
[2]
Le Ru E. C., Etchegoin P. G., Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects 2009 Amsterdam, The Netherlands Elsevier
[3]
Lu X., Rycenga M., Skrabalak S. E., Wiley B., Xia Y., Chemical synthesis of novel plasmonic nanoparticles Annual Review of Physical Chemistry 2009 Volume 60 pp.167 –192
[4]
Cushing B. L., Kolesnichenko V. L., O'Connor C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles Chemical Reviews 2004 Volume 104 Issue 9 pp.3893 –3946
[5]
Serp P., Philippot K., Nanomaterials in Catalysis 2013 Weinheim, Germany WILEY-VCH Verlag GmbH & Co. KGaA
[6]
Gedanken A., Using sonochemistry for the fabrication of nanomaterials Ultrasonics Sonochemistry 2004 Volume 11 Issue 2 pp.47 –55
[7]
Nagata Y., Watananabe Y., Fujita S.-I., Dohmaru T., Taniguchi S., Formation of colloidal silver in water by ultrasonic irradiation Journal of the Chemical Society, Chemical Communications 1992 Issue 21 pp.1620 –1622
[8]
Yeung S. A., Hobson R., Biggs S., Grieser F., Formation of gold sols using ultrasound Journal of the Chemical Society, Chemical Communications 1993 Issue 4 pp.378 –379
[9]
Wagner J., Köhler J. M., Continuous synthesis of gold nanoparticles in a microreactor Nano Letters 2005 Volume 5 Issue 4 pp.685 –691
[10]
Wagner J., Kirner T., Mayer G., Albert J., Köhler J. M., Generation of metal nanoparticles in a microchannel reactor Chemical Engineering Journal 2004 Volume 101 Issue 1–3 pp.251 –260
[11]
Suslick K. S., Choe S.-B., Cichowlas A. A., Grinstaff M. W., Sonochemical synthesis of amorphous iron Nature 1991 Volume 353 Issue 6343 pp.414 –416
[12]
Tu W., Liu H., Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation Journal of Materials Chemistry 2000 Volume 10 Issue 9 pp.2207 –2211
[13]
Yamamoto T., Wada Y., Sakata T., Mori H., Goto M., Hibino S., Yanagida S., Microwave-assisted preparation of silver nanoparticles Chemistry Letters 2004 Volume 33 Issue 2 pp.158 –159
[14]
Frens G., Particle size and sol stability in metal colloids Colloid & Polymer Science 1972 Volume 250 Issue 7 pp.736 –741
[15]
Frens G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions Nature Physical Science 1973 Volume 241 pp.20 –22
[16]
Athawale A. A., Katre P. P., Kumar M., Majumdar M. B., Synthesis of CTAB-IPA reduced copper nanoparticles Materials Chemistry and Physics 2005 Volume 91 Issue 2-3 pp.507 –512
[17]
Tsuji M., Hashimoto M., Nishizawa Y., Kubokawa M., Tsuji T., Microwave-assisted synthesis of metallic nanostructures in solution Chemistry—A European Journal 2005 Volume 11 Issue 2 pp.440 –452
[18]
Takami A., Kurita H., Koda S., Laser-induced size reduction of noble metal particles The Journal of Physical Chemistry B 1999 Volume 103 Issue 8 pp.1226 –1232
[19]
Hashimoto S., Uwada T., Hagiri M., Shiraishi R., Mechanistic aspect of surface modification on glass substrates assisted by single shot pulsed laser-induced fragmentation of gold nanoparticles Journal of Physical Chemistry C 2011 Volume 115 Issue 12 pp.4986 –4993
[20]
Mafuné F., Kohno J.-Y., Takeda Y., Kondow T., Formation of stable platinum nanoparticles by laser ablation in water Journal of Physical Chemistry B 2003 Volume 107 Issue 18 pp.4218 –4223
[21]
Bae C. H., Nam S. H., Park S. M., Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution Applied Surface Science 2002 Volume 197-198 pp.628 –634
[22]
Akamatsu K., Ikeda S., Nawafune H., Yanagimoto H., Direct patterning of copper on polyimide using ion exchangeable surface templates generated by site-selective surface modification Journal of the American Chemical Society 2004 Volume 126 Issue 35 pp.10822 –10823
[23]
Akamatsu K., Fujii M., Tsuruoka T., Nakano S.-I., Murashima T., Nawafune H., Mechanistic study on microstructural tuning of metal nanoparticle/polymer composite thin layers: hydrogenation and decomposition of polyimide matrices catalyzed by embedded nickel nanoparticles Journal of Physical Chemistry C 2012 Volume 116 Issue 33 pp.17947 –17954
[24]
Fievet F., Lagier J. P., Blin B., Beaudoin B., Figlarz M., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles Solid State Ionics 1989 Volume 32-33 part 1 pp.198 –205
[25]
Kurihara L. K., Chow G. M., Schoen P. E., Nanocrystalline metallic powders and films produced by the polyol method Nanostructured Materials 1995 Volume 5 Issue 6 pp.607 –613
[26]
Wiley B., Herricks T., Sun Y., Xia Y., Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons Nano Letters 2004 Volume 4 Issue 9 pp.1733 –1739
[27]
Kvítek L., Panáček A., Soukupová J., Kolář M., Večeřová R., Prucek R., Holecová M., Zbořil R., Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles NPs Journal of Physical Chemistry C 2008 Volume 112 Issue 15 pp.5825 –5834
[28]
Hara R., Fukuoka T., Takahashi R., Utsumi Y., Yamaguchi A., Surface-enhanced Raman spectroscopy using a coffee-ring-type three-dimensional silver nanostructure RSC Advances 2015 Volume 5 Issue 2 pp.1378 –1384
[29]
Ma Q., Moldovan N., Mancini D. C., Rosenberg R. A., Synchrotron-radiation-induced, selective-area deposition of gold on polyimide from solution Applied Physics Letters 2000 Volume 76 Issue 15 pp.2014
[30]
Borse P. H., Yi J. M., Je J. H., Tsai W. L., Hwu Y., pH dependence of synchrotron x-ray induced electroless nickel deposition Journal of Applied Physics 2004 Volume 95 Issue 3 pp.1166 –1170
[31]
Borse P. H., Yi J. M., Je J. H., Choi S. D., Hwu Y., Ruterana P., Nouet G., Formation of magnetic Ni nanoparticles in x-ray irradiated electroless solution Nanotechnology 2004 Volume 15 Issue 6 pp.S389 –S392
[32]
Yang Y.-C., Wang C.-H., Hwu Y.-K., Je J.-H., Synchrotron X-ray synthesis of colloidal gold particles for drug delivery Materials Chemistry and Physics 2006 Volume 100 Issue 1 pp.72 –76
[33]
Wang C.-L., Hsao B.-J., Lai S.-F., Chen W.-C., Chen H.-H., Chen Y.-Y., Chien C.-C., Cai X., Kempson I. M., Hwu Y., Margaritondo G., One-pot synthesis of AuPt alloyed nanoparticles by intense x-ray irradiation Nanotechnology 2011 Volume 22 Issue 6
[34]
Karadas F., Ertas G., Ozkaraoglu E., Suzer S., X-ray-induced production of gold nanoparticles on a SiO2/Si system and in a polymethyl methacrylate matrix Langmuir 2005 Volume 21 Issue 1 pp.437 –442
[35]
Lee H. J., Je J. H., Hwu Y., Tsai W., Synchrotron X-ray induced solution precipitation of nanoparticles Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003 Volume 199 pp.342 –347
[36]
Yamaguchi A., Matsumoto T., Okada I., Sakurai I., Utsumi Y., Surface-enhanced Raman scattering active gold nanostructure fabricated by photochemical reaction of synchrotron radiation Materials Chemistry and Physics 2015 Volume 160 pp.205 –211
[37]
Ghosh S. K., Pal T., Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications Chemical Reviews 2007 Volume 107 Issue 11 pp.4797 –4862
[38]
Volanti D. P., Keyson D., Cavalcante L. S., Simões A. Z., Joya M. R., Longo E., Varela J. A., Pizani P. S., Souza A. G., Synthesis and characterization of CuO flower-nanostructure processing by a domestic hydrothermal microwave Journal of Alloys and Compounds 2008 Volume 459 Issue 1-2 pp.537 –542
[39]
Debbichi L., Marco De Lucas M. C., Pierson J. F., Krüger P., Vibrational properties of CuO and Cu4O3 from first-principles calculations, and raman and infrared spectroscopy Journal of Physical Chemistry C 2012 Volume 116 Issue 18 pp.10232 –10237
[40]
Poizot P., Laruelle S., Grugeon S., Dupont L., Tarascon J.-M., Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries Nature 2000 Volume 407 Issue 6803 pp.496 –499
[41]
Park J. C., Kim A. Y., Kim J. Y., Park S., Park K. H., Song H., ZnO-CuO core-branch nanocatalysts for ultrasound-assisted azide-alkyne cycloaddition reactions Chemical Communications 2012 Volume 48 Issue 68 pp.8484 –8486
[42]
Henglein A., Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of CuCN The Journal of Physical Chemistry B 2000 Volume 104 Issue 6 pp.1206 –1211
[43]
Long J., Dong J., Wang X., Ding Z., Zhang Z., Wu L., Li Z., Fu X., Photochemical synthesis of submicron- and nano-scale Cu2O particles Journal of Colloid and Interface Science 2009 Volume 333 Issue 2 pp.791 –799
[44]
Dar M. A., Ahsanulhaq Q., Kim Y. S., Sohn J. M., Kim W. B., Shin H. S., Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by hydrothermal method; structural properties and growth mechanism Applied Surface Science 2009 Volume 255 Issue 12 pp.6279 –6284
[45]
Yeh M.-S., Yang Y.-S., Lee Y.-P., Lee H.-F., Yeh Y.-H., Yeh C.-S., Formation and characteristics of Cu colloids from CuO powder by laser irradiation in 2-propanol Journal of Physical Chemistry B 1999 Volume 103 Issue 33 pp.6851 –6857
[46]
Radi A., Pradhan D., Sohn Y., Leung K. T., Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si100 by one-step, templateless, capping-agent-free electrodeposition ACS Nano 2010 Volume 4 Issue 3 pp.1553 –1560
[47]
Izaki M., Shinagawa T., Mizuno K.-T., Ida Y., Inaba M., Tasaka A., Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device Journal of Physics D: Applied Physics 2007 Volume 40 Issue 11 pp.3326
[48]
Fleisch T. H., Mains G. J., Reduction of copper oxides by UV radiation and atomic hydrogen studied by XPS Applications of Surface Science 1982 Volume 10 Issue 1 pp.51 –62
[49]
Tamaki J., Shimanoe K., Yamada Y., Yamamoto Y., Miura N., Yamazoe N., Dilute hydrogen sulfide sensing properties of CuO-SnO2 thin film prepared by low-pressure evaporation method Sensors and Actuators, B: Chemical 1998 Volume 49 Issue 1-2 pp.121 –125
[50]
Shao W., Pattanaik G., Zangari G., Electrochemical nucleation and growth of copper from acidic sulfate electrolytes on n-Si  001  Journal of the Electrochemical Society 2007 Volume 154 Issue 7 pp.D339 –D345
[51]
Zhang J., Liu J., Peng Q., Wang X., Li Y., Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors Chemistry of Materials 2006 Volume 18 Issue 4 pp.867 –871
[52]
Clay R. T., Cohen R. E., Synthesis of Cu and CuO nanoclusters within microphase-separated diblock copolymers New Journal of Chemistry 1998 Volume 22 Issue 7 pp.745 –748
[53]
Lisiecki I., Pileni M. P., Synthesis of copper metallic clusters using reverse micelles as microreactors Journal of the American Chemical Society 1993 Volume 115 Issue 10 pp.3887 –3896
[54]
Brookshier M. A., Chusuei C. C., Goodman D. W., Control of CuO particle size on SiO2 by spin coating Langmuir 1999 Volume 15 Issue 6 pp.2043 –2046
[55]
Oyanagi H., Orimoto Y., Hayakawa K., Hatada K., Sun Z., Zhang L., Yamashita K., Nakamura H., Uehara M., Fukano A., Maeda H., Nanoclusters synthesized by synchrotron radiolysis in concert with wet chemistry Scientific Reports 2014 Volume 4, article 7199
[56]
Yamaguchi A., Okada I., Fukuoka T., Sakurai I., Utsumi Y., Synthesis of metallic nanoparticles through X-ray radiolysis using synchrotron radiation Japanese Journal of Applied Physics 2016 Volume 55 Issue 5
[57]
Ishihara T., Higuchi M., Takagi T., Ito M., Nishiguchi H., Takita Y., Preparation of CuO thin films on porous BaTiO3 by self-assembled multibilayer film formation and application as a CO2 sensor Journal of Materials Chemistry 1998 Volume 8 Issue 9 pp.2037 –2042
[58]
Luo J., Steier L., Son M. –K., Schreier M., Mayer M. T., Grätzel M., Cu2O nanowire photocathodes for efficient and durable solar water splitting Nano Letters 2016 Volume 16 Issue 3 pp.1848 –1857
[59]
Weiss J., Radiochemistry of aqueous solutions Nature 1944 Volume 153 pp.748 –750
[60]
Weiss J., Biological action of radiations Nature 1946 Volume 157 pp.584
[61]
Miller N., Quantitative studies of radiation‐induced reactions in aqueous solution. I. Oxidation of ferrous sulfate by X‐ and γ‐radiation The Journal of Chemical Physics 1950 Volume 18 Issue 1 pp.79
[62]
Samuel A. H., Magee J. L., Theory of radiation chemistry. II. Track effects in radiolysis of water The Journal of Chemical Physics 1953 Volume 21 Issue 6 pp.1080 –1087
[63]
Johnsen R. H., Barker N. T., Burgin M., Studies on iodine as a scavenger in irradiated hydrocarbons and hydrocarbon-alcohol solutions The Journal of Physical Chemistry 1969 Volume 73 Issue 10 pp.3204 –3208
[64]
Getoff N., Radiation-induced degradation of water pollutants—state of the art Radiation Physics and Chemistry 1996 Volume 47 Issue 4 pp.581 –593
[65]
Buxton G. V., Greenstock C. L., Helman W. P., Ross A. B., Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals ·OH/·O in Aqueous Solution Journal of Physical and Chemical Reference Data 1998 Volume 17 Issue 2 pp.513
[66]
LaMer V. K., Dinegar R. H., Theory, production and mechanism of formation of monodispersed hydrosols Journal of the American Chemical Society 1950 Volume 72 Issue 11 pp.4847 –4854
[67]
Hogg R., Healy T. W., Fuerstenau D. W., Mutual coagulation of colloidal dispersions Transactions of the Faraday Society 1966 Volume 62 pp.1638 –1651
[68]
Israelacvili J. N., Intermolecular and Surface Forces 2011 3rd London, UK Academic Press
[69]
Frazier W. E., Metal additive manufacturing: a review Journal of Materials Engineering and Performance 2014 Volume 23 Issue 6 pp.1917 –1928
[70]
Wong K. V., Hernandez A., A review of additive manufacturing ISRN Mechanical Engineering 2012 Volume 2012 –10
[71]
Jonušauskas L., Lau M., Gruber P., Gökce B., Barcikowski S., Malinauskas M., Ovsianikov A., Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers Nanotechnology 2016 Volume 27 Issue 15
[72]
Saile V., Wallradbe U., Tabata O., Korvink J. G., Advanced Micro and Nanosystems, Volume 7: LIGA and Its Applications 2009 Weinheim, Germany Wiley-VCH
  1. One-Step Synthesis of Copper and Cupric Oxide Particles from the Liquid Phase by X-Ray Radiolysis Using Synchrotron Radiation

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Nanomaterials
    Journal of Nanomaterials  Volume 2016, Issue
    December 2016
    ISSN:1687-4110
    EISSN:1687-4129
    Issue’s Table of Contents

    Publisher

    Hindawi Limited

    London, United Kingdom

    Publication History

    Published: 01 December 2016

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 0
      Total Downloads
    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    View Options

    View options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media