[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/948542.948551acmconferencesArticle/Chapter ViewAbstractPublication PagestapiaConference Proceedingsconference-collections
Article

The disputed federalist papers: SVM feature selection via concave minimization

Published: 15 October 2003 Publication History

Abstract

In this paper, we use a method proposed by Bradley and Mangasarian "Feature Selection via Concave Minimization and Support Vector Machines" to solve the well-known disputed Federalist Papers classification problem. We find a separating plane that classifies correctly all the "training set" papers of known authorship, based on the relative frequencies of only three words. Using the obtained separating hyperplane in three dimensions, all of the 12 disputed papers ended up on the Madison side of the separating plane. This result coincides with previous work on this problem using other classification techniques.

References

[1]
K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two linearly inseparable sets. Optimization Methods and Software, 1:23--34, 1992.
[2]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam's razor. Information Processing Letters, 24:377--380, 1987.
[3]
R. A. Bosch and J. A. Smith. Separating hyperplanes and the authorship of the disputed federalist papers. American Mathematical Monthly, 105(7):601--608, August-September 1998.
[4]
P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In J. Shavlik, editor, Machine Learning Proceedings of the Fifteenth International Conference(ICML '98), pages 82--90, San Francisco, California, 1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.
[5]
P. S. Bradley, O. L. Mangasarian, and J. B. Rosen. Parsimonious least norm approximation. Computational Optimization and Applications, 11(1):5--21, October 1998. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-03.ps.
[6]
P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via mathematical programming. INFORMS Journal on Computing, 10(2):209--217, 1998. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.
[7]
V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John Wiley & Sons, New York, 1998.
[8]
O. L. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer, B. Riedmueller, and S. Schaeffler, editors, Applied Mathematics and Parallel Computing - Festschrift for Klaus Ritter, pages 175--188. Physica-Verlag A Springer-Verlag Company, Heidelberg, 1996. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-20.ps.
[9]
O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Letters, 24:15--23, 1999. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.
[10]
O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135--146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.
[11]
T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.
[12]
F. Mosteller and D. L. Wallace. Inference and Disputed Authorship: The Federalist. Addison-Wesley, Massachusetts, series in behavioral science:quantitative methods edition, 1964.
[13]
V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

Cited By

View all
  • (2022)A Review of Attribution Technical for APT Attacks2022 7th IEEE International Conference on Data Science in Cyberspace (DSC)10.1109/DSC55868.2022.00077(512-518)Online publication date: Jul-2022
  • (2020)A successive linear approximation algorithm for the global minimization of a concave quadratic programComputational and Applied Mathematics10.1007/s40314-020-01317-139:4Online publication date: 12-Sep-2020
  • (2019)Türkçe Köşe Yazılarında Yapay Sinir Ağlarıyla Yazar ve Gazete Tahmin EtmeDÜMF Mühendislik Dergisi10.24012/dumf.42575410:1(45-56)Online publication date: 15-Mar-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
TAPIA '03: Proceedings of the 2003 conference on Diversity in computing
October 2003
82 pages
ISBN:1581137907
DOI:10.1145/948542
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 15 October 2003

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. support vector machines
  2. text classification

Qualifiers

  • Article

Conference

TAPIA03
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 24 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)A Review of Attribution Technical for APT Attacks2022 7th IEEE International Conference on Data Science in Cyberspace (DSC)10.1109/DSC55868.2022.00077(512-518)Online publication date: Jul-2022
  • (2020)A successive linear approximation algorithm for the global minimization of a concave quadratic programComputational and Applied Mathematics10.1007/s40314-020-01317-139:4Online publication date: 12-Sep-2020
  • (2019)Türkçe Köşe Yazılarında Yapay Sinir Ağlarıyla Yazar ve Gazete Tahmin EtmeDÜMF Mühendislik Dergisi10.24012/dumf.42575410:1(45-56)Online publication date: 15-Mar-2019
  • (2018)Authorship Attribution for Online Social MediaSocial Network Analytics for Contemporary Business Organizations10.4018/978-1-5225-5097-6.ch008(141-165)Online publication date: 2018
  • (2017)Authorship Attribution for Social Media ForensicsIEEE Transactions on Information Forensics and Security10.1109/TIFS.2016.260396012:1(5-33)Online publication date: 1-Jan-2017
  • (2016) The Character in the Letter: Epistolary Attribution in Samuel Richardson’s Clarissa Digital Scholarship in the Humanities10.1093/llc/fqw007(fqw007)Online publication date: 18-Mar-2016
  • (2016)Unsupervised and Semisupervised Classification Via Absolute Value InequalitiesJournal of Optimization Theory and Applications10.1007/s10957-015-0818-5168:2(551-558)Online publication date: 1-Feb-2016
  • (2015)Authorship AnalysisNew Threats and Countermeasures in Digital Crime and Cyber Terrorism10.4018/978-1-4666-8345-7.ch010(173-194)Online publication date: 2015
  • (2015)Text based classification of companies in CrunchBase2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)10.1109/FUZZ-IEEE.2015.7337892(1-7)Online publication date: Aug-2015
  • (2013)The federalist papers revisitedProceedings of the 76th ASIS&T Annual Meeting: Beyond the Cloud: Rethinking Information Boundaries10.5555/2655780.2655807(1-8)Online publication date: 1-Nov-2013
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media