[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Variance with alternative scramblings of digital nets

Published: 01 October 2003 Publication History

Abstract

There have been many proposals for randomizations of digital nets. Some of those proposals greatly reduce the computational burden of random scrambling. This article compares the sampling variance under different scrambling methods. Some scrambling methods adversely affect the variance, even to the extent of deteriorating the rate at which variance converges to zero. Surprisingly, a new scramble proposed here, has the effect of improving the rate at which the variance converges to zero, but so far, only for one dimensional integrands. The mean squared L2 discrepancy is commonly used to study scrambling schemes. In this case, it does not distinguish among some scrambles with different convergence rates for the variance.

References

[1]
Bakhvalov, N. S. 1959. On approximate calculation of multiple integrals. Vestnik Moskovskogo Universiteta, Seriya Matematiki, Mehaniki, Astronomi, Fiziki, Himii 4, 3--18. (In Russian).
[2]
Cochran, W. G. 1977. Sampling Techniques (3rd Ed). Wiley, New York.
[3]
Cranley, R. and Patterson, T. 1976. Randomization of number theoretic methods for multiple integration. SIAM J. Numer. Anal. 13, 904--914.
[4]
de Boor, C. 1978. A Practical Guide to Splines. Springer, New York.
[5]
Faure, H. 1982. Discrépance de suites associées à un systéme de numération (en dimension s). Acta Arithmet. 41, 337--351.
[6]
Faure, H. 1992. Good permutations for extreme discrepancy. J. Numb. Theory 42, 47--56.
[7]
Faure, H. 2001. Variations on (0,s)-sequences. J. Complex. 17, 741--753.
[8]
Faure, H. and Tezuka, S. 2002. Another random scrambling of digital (t,s)--sequences. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K. T. Fang, F. J. Hickernell, and H. Niederreiter, Eds. Springer-Verlag, Berlin, Germany, 242--256.
[9]
Fox, B. L. 1999. Strategies for quasi-Monte Carlo. Kluwer Academic, Boston, Mass.
[10]
Friedel, I. and Keller, A. 2002. Fast generation of randomized low-discrepancy point sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000, K. T. Fang, F. J. Hickernell, and H. Niederreiter, Eds. Springer-Verlag, Berlin, Germany, 257--273.
[11]
Haber, S. 1967. A modified Monte Carlo quadrature, II. Math. Computat. 21, 388--397.
[12]
Heinrich, S. 1993. Random approximation in numerical analysis. In Functional analysis. Proceedings of the Essen Conference (Essen, Germany, Nov. 24--30). K. D. Bierstedt, A. Pietsch, W. M. Ruess, and D. Vogt, Eds. Marcel Dekker, New York, 123--171.
[13]
Hickernell, F. J. 1996a. The mean square discrepancy of randomized nets. ACM Trans. Model. Comput. Simul. 6, 274--296.
[14]
Hickernell, F. J. 1996b. Quadrature error bounds and figures of merit for quasi-random points. SIAM J. Numer. Anal. 33, 1995--2016. Corrected printing of Sections 3-6 in ibid., 34 (1997), 853--866.
[15]
Hickernell, F. J. 1998a. A generalized discrepancy and quadrature error bound. Math. Comput. 67, 299--322.
[16]
Hickernell, F. J. 1998b. Lattice rules: how well do they measure up? In Random and Quasi-Random Point Sets, P. Hellekalek and G. Larcher, Eds. Springer, New York, 109--168.
[17]
Hickernell, F. J. and Yue, R. X. 2000. The mean square discrepancy of scrambled (t,s)-sequences. SIAM J. Numer. Anal. 38, 1089--1112.
[18]
Hlawka, E. 1961. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mate. Pura Appl. 54, 325--333.
[19]
Hong, H. S. and Hickernell, F. J. 1999. The asymptotic efficiency of randomized nets for quadrature. Math. Comput. 68, 767--791.
[20]
Hong, H. S. and Hickernell, F. J. 2003. Implementing scrambled digital sequences. AMS Trans. Math/Softw. 29, 95--109.
[21]
L'Ecuyer, P. and Lemieux, C. 2002. A survey of randomized quasi-Monte Carlo methods. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods, and Applications, M. Dror, P. L'Ecuyer, and F. Szidarovszki, Eds. Kluwer Academic Publishers, New York, 419--474.
[22]
Matoušek, J. 1998a. Geometric Discrepancy : An Illustrated Guide. Springer-Verlag, Heidelberg.
[23]
Matoušek, J. 1998b. On the L2--discrepancy for anchored boxes. J. Complex. 14, 527--556.
[24]
Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia, PA.
[25]
Owen, A. B. 1995. Randomly permuted (t, m, s)-nets and (t, s)-sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, H. Niederreiter and P. J.-S. Shiue, Eds. Springer-Verlag, New York, 299--317.
[26]
Owen, A. B. 1997a. Monte Carlo variance of scrambled equidistribution quadrature. SIAM J. Numer. Anal. 34, 5, 1884--1910.
[27]
Owen, A. B. 1997b. Scrambled net variance for integrals of smooth functions. Ann. Stat. 25, 4, 1541--1562.
[28]
Owen, A. B. 1998. Latin supercube sampling for very high dimensional simulations. ACM Trans. Model. Comput. Simul. 8, 2, 71--102.
[29]
Owen, A. B. 1999. Monte Carlo, quasi-Monte Carlo, and randomized quasi-Monte Carlo. In Monte Carlo and quasi-Monte Carlo Methods 1998, H. Niederreiter and J. Spanier, Eds. Springer-Verlag, Berlin, 86--97.
[30]
Roth, K. F. 1980. On irregularities of distribution IV. Acta Arithmet. 37, 67--75.
[31]
Tan, K. S. and Boyle, P. P. 2000. Applications of randomized low discrepancy sequences to the valuation of complex securities. J. Econ. Dynam. Cont. 24, 1747--1782.
[32]
Tezuka, S. 1995. Uniform random numbers: theory and practice. Kluwer Academic Publishers, Boston, Mass.
[33]
Tezuka, S. 2002. On randomization of generalized faure sequences. Tech. Rep. RT0494, IBM Tokyo Research Laboratory.
[34]
Tezuka, S. and Faure, H. 2002. I-binomial scrambling of digital nets and sequences. Tech. Rep., IBM Tokyo Research Laboratory.
[35]
van der Corput, J. G. 1935a. Verteilungsfunktionen I. Nederl. Akad. Wetensch. Proc. 38, 813--821.
[36]
van der Corput, J. G. 1935b. Verteilungsfunktionen II. Nederl. Akad. Wetensch. Proc. 38, 1058--1066.
[37]
Zaremba, S. K. 1968. Some applications of multidimensional integration by parts. Ann. Pol. Math. 21, 85--96.

Cited By

View all
  • (2024)Differentiable Owen ScramblingACM Transactions on Graphics10.1145/368776443:6(1-12)Online publication date: 19-Dec-2024
  • (2024)A Universal Median Quasi-Monte Carlo IntegrationSIAM Journal on Numerical Analysis10.1137/22M152507762:1(533-566)Online publication date: 16-Feb-2024
  • (2024)Pre-Scrambled Digital Nets for Randomized Quasi-Monte Carlo2024 Winter Simulation Conference (WSC)10.1109/WSC63780.2024.10838945(443-454)Online publication date: 15-Dec-2024
  • Show More Cited By

Index Terms

  1. Variance with alternative scramblings of digital nets

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Modeling and Computer Simulation
    ACM Transactions on Modeling and Computer Simulation  Volume 13, Issue 4
    October 2003
    84 pages
    ISSN:1049-3301
    EISSN:1558-1195
    DOI:10.1145/945511
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 October 2003
    Published in TOMACS Volume 13, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Derandomization
    2. quasi-Monte Carlo
    3. randomization

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)8
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 23 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Differentiable Owen ScramblingACM Transactions on Graphics10.1145/368776443:6(1-12)Online publication date: 19-Dec-2024
    • (2024)A Universal Median Quasi-Monte Carlo IntegrationSIAM Journal on Numerical Analysis10.1137/22M152507762:1(533-566)Online publication date: 16-Feb-2024
    • (2024)Pre-Scrambled Digital Nets for Randomized Quasi-Monte Carlo2024 Winter Simulation Conference (WSC)10.1109/WSC63780.2024.10838945(443-454)Online publication date: 15-Dec-2024
    • (2024)Randomized Quasi-Monte Carlo Methods on Triangles: Extensible Lattices and SequencesMethodology and Computing in Applied Probability10.1007/s11009-024-10084-z26:2Online publication date: 1-Jun-2024
    • (2023)Confidence Intervals for Randomized Quasi-Monte Carlo EstimatorsProceedings of the Winter Simulation Conference10.5555/3643142.3643179(445-456)Online publication date: 10-Dec-2023
    • (2023)ART-Owen ScramblingACM Transactions on Graphics10.1145/361830742:6(1-11)Online publication date: 5-Dec-2023
    • (2023)Confidence Intervals for Randomized Quasi-Monte Carlo Estimators2023 Winter Simulation Conference (WSC)10.1109/WSC60868.2023.10408613(445-456)Online publication date: 10-Dec-2023
    • (2022)Monte Carlo and Quasi–Monte Carlo Density Estimation via ConditioningINFORMS Journal on Computing10.1287/ijoc.2021.113534:3(1729-1748)Online publication date: 1-May-2022
    • (2022)Super-polynomial accuracy of one dimensional randomized nets using the median of meansMathematics of Computation10.1090/mcom/3791Online publication date: 7-Oct-2022
    • (2022)Dependence properties of scrambled Halton sequencesMathematics and Computers in Simulation10.1016/j.matcom.2022.04.016200(240-262)Online publication date: Oct-2022
    • Show More Cited By

    View Options

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media