[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/335305.335314acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free access

Circuit minimization problem

Published: 01 May 2000 Publication History
First page of PDF

References

[1]
A. Andreev, A. Clementi, and J. Rolim. A new general derandomization method. Journal of the Association for Computing Machinery, 45(1):179-213, 1998. (preliminary version in ICALP'96).
[2]
A. Andreev, A. Clementi, J. Rolim, and L. Trevisan. Weak random sources, hitting sets, and BPP simulations. In Proceedings of the Thirty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pages 264-272, 1997.
[3]
L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations unless EX- PTiME has publishable proofs. Complexity, 3:307-318, 1993.
[4]
H. Buhrman and L. Fortnow. One-sided versus twosided error in probabilistic computation. In C. Meinel and S. Tison, editors, Proceedings of the Sixteenth Annual Symposium on Theoretical Aspects of Computer Science, volume 1563 of Lecture Notes in Computer Science, pages 100-109. Springer Verlag, 1999.
[5]
S. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual A CM Symposium on Theory of Computing, pages 151-158, 1971.
[6]
M. Garey and D. johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.
[7]
O. Goldreich and A. Wigderson. Improved derandomization of BPP using a. hitting set generator. In D. Hochbaum, K. Jansen, J. Rolim, and A. Sinclair, editors, Randomization, Approximation, and Combinatorial Optimization, volume 1671 of Lecture Notes in Computer Science, pages 131-137. Springer Verlag, 1999. (RANDOM-APPROX'99).
[8]
O. Goldreich and D. Zuckerman. Another proof that BPPCPH (and more). Electronic Colloquium on Computational Complexity, TR97-045, 1997.
[9]
R. Impagliazzo, R. Shaltiel, and A. Wigderson. Near-optimal conversion of hardness into pseudorandomness. In Proceedings of the Fortieth Annual IEEE Symposium on Foundations of Computer Science, pages 181-190, 1999.
[10]
R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual A CM Symposium on Theory of Computing, pages 220-229, 1997.
[11]
R. Kannan. Circuit-size lower bounds and nonreducibility to sparse sets. Information and Control, 55'40-56, 1982.
[12]
J. KSbler and O. Watanabe. New collapse consequences of NP having small circuits. SIAM Journal on Computing, 28(1):311-324, 1998.
[13]
C. Lautemann. BPP and the polynomial time hierarchy. Information Processing Letters, 17:215-218, 1983.
[14]
H. Lenstra Jr. and C. Pomerance. A rigorous time bound for factoring integers. Journal of the American Mathematical Society, 5(3):483-516, 1992.
[15]
O. Lupanov. A method of circuit synthesis. Izvestiya VUZ, Radiofizika, 1(1):120-140, 1959. (in Russian).
[16]
O. Lupanov. On the synthesis of certain classes of control systems. In Problemy Kibernetiki 10, pages 63-97. Fizmatgiz, Moscow, 1963. (in Russian).
[17]
W. Masek. Some NP-complete set covering problems. Manuscript, 1979.
[18]
P. B. Miltersen, N. Vinodchadran, and O. Watanabe. Super-polynomial versus half-exponential circuit size in the exponential hierarchy. In T. Asano, H. Imai, D. Lee, S. Nakano, and T. Tokuyama, editors, Proceedings of the Fifth Annual International Conference on Computing and Combinatorics, volume 1627 of Lecture Notes in Computer Science, pages 210-220. Springer Verlag, 1999. (COCOON'99).
[19]
N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System Sciences, 49:149-167, 1994.
[20]
J. Pollard. Theorems on factorization and primality testing. Proceedings of the Cambridge Philosophical Society, 76:521-528, 1974.
[21]
A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences, 55:24-35, 1997.
[22]
C. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical Journal, 28(1):59-98, 1949.
[23]
M. Sipser. A complexity theoretic approach to randomness. In Proceedings of the Fifteenth Annual A CM Symposium on Theory of Computing, pages 330-335, 1983.
[24]
V. Strassen. Einige Resultate /iber Berechnungskomplexit~it. Jahresberichte der DMV, 78:1-8, 1976.
[25]
B. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force search) algorithms. Annals of the History of Computing, 6(4):384-400, 1984.
[26]
C. Wilson. Relativized circuit complexity. Journal of Computer and System Sciences, 31:169-181, 1985.
[27]
S. Yablonski. The algorithmic difficulties of synthesizing minimal switching circuits. In Problemy Kibernetiki 2, pages 75-121. Fizmatgiz, Moscow, 1959. English translation in Problems of Cybernetics II.
[28]
S. Yablonski. On the impossibility of eliminating perebor in solving some problems of circuit theory. Doklady Akademii Nauk SSSR, 124(1):44-47, 1959. English translation in Soviet Mathematics Doklady.
[29]
S. Zachos and H. Heller. A decisive characterization of BPP. Information and Control, 69(1-3):125-135, 1986.

Cited By

View all
  • (2024)Symmetric Exponential Time Requires Near-Maximum Circuit SizeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649624(1990-1999)Online publication date: 10-Jun-2024
  • (2024)On One-Way Functions, the Worst-Case Hardness of Time-Bounded Kolmogorov Complexity, and Computational DepthTheory of Cryptography10.1007/978-3-031-78011-0_8(222-252)Online publication date: 2-Dec-2024
  • (2024)Lower Bounds for Levin–Kolmogorov ComplexityTheory of Cryptography10.1007/978-3-031-78011-0_7(191-221)Online publication date: 2-Dec-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '00: Proceedings of the thirty-second annual ACM symposium on Theory of computing
May 2000
756 pages
ISBN:1581131844
DOI:10.1145/335305
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 2000

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

STOC00
Sponsor:

Acceptance Rates

STOC '00 Paper Acceptance Rate 85 of 182 submissions, 47%;
Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Upcoming Conference

STOC '25
57th Annual ACM Symposium on Theory of Computing (STOC 2025)
June 23 - 27, 2025
Prague , Czech Republic

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)302
  • Downloads (Last 6 weeks)39
Reflects downloads up to 21 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Symmetric Exponential Time Requires Near-Maximum Circuit SizeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649624(1990-1999)Online publication date: 10-Jun-2024
  • (2024)On One-Way Functions, the Worst-Case Hardness of Time-Bounded Kolmogorov Complexity, and Computational DepthTheory of Cryptography10.1007/978-3-031-78011-0_8(222-252)Online publication date: 2-Dec-2024
  • (2024)Lower Bounds for Levin–Kolmogorov ComplexityTheory of Cryptography10.1007/978-3-031-78011-0_7(191-221)Online publication date: 2-Dec-2024
  • (2024)A Direct PRF Construction from Kolmogorov ComplexityAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58737-5_14(375-406)Online publication date: 28-Apr-2024
  • (2023)Bounded RelativizationProceedings of the conference on Proceedings of the 38th Computational Complexity Conference10.4230/LIPIcs.CCC.2023.6(1-45)Online publication date: 17-Jul-2023
  • (2023)Sum-of-Squares Lower Bounds for the Minimum Circuit Size ProblemProceedings of the conference on Proceedings of the 38th Computational Complexity Conference10.4230/LIPIcs.CCC.2023.31(1-21)Online publication date: 17-Jul-2023
  • (2023)Indistinguishability Obfuscation, Range Avoidance, and Bounded ArithmeticProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585187(1076-1089)Online publication date: 2-Jun-2023
  • (2023)NP-Hardness of Approximating Meta-Complexity: A Cryptographic ApproachProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585154(1067-1075)Online publication date: 2-Jun-2023
  • (2023)Capturing One-Way Functions via NP-Hardness of Meta-ComplexityProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585130(1027-1038)Online publication date: 2-Jun-2023
  • (2023)SAT Reduces to the Minimum Circuit Size Problem with a Random Oracle2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00048(733-742)Online publication date: 6-Nov-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media