[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Digital Dance Ethnography: Organizing Large Dance Collections

Published: 17 November 2019 Publication History

Abstract

Folk dances often reflect the socio-cultural influences prevailing in different periods and nations; each dance produces a meaning, a story with the help of music, costumes and dance moves. However, dances have no borders; they have been transmitted from generation to generation, along different countries, mainly due to movements of people carrying and disseminating their civilization. Studying the contextual correlation of dances along neighboring countries, unveils the evolution of this unique intangible heritage in time, and helps in understanding potential cultural similarities. In this work we present a method for contextually motion analysis that organizes dance data semantically, to form the first digital dance ethnography. Firstly, we break dance motion sequences into some narrow temporal overlapping feature descriptors, named motion and style words, and then cluster them in a high-dimensional features space to define motifs. The distribution of those motion and style motifs creates motion and style signatures, in the content of a bag-of-motifs representation, that implies for a succinct but descriptive portrayal of motions sequences. Signatures are time-scale and temporal-order invariant, capable of exploiting the contextual correlation between dances, and distinguishing fine-grained difference between semantically similar motions. We then use quartet-based analysis to organize dance data into a categorization tree, while inferred information from dance metadata descriptions are then used to set parent-child relationships. We illustrate a number of different organization trees, and portray the evolution of dances over time. The efficiency of our method is also demonstrated in retrieving contextually similar dances from a database.

Supplementary Material

aristidou (aristidou.zip)
Supplemental movie, appendix, image and software files for, Digital Dance Ethnography: Organizing Large Dance Collections

References

[1]
Dimitrios S. Alexiadis and Petros Daras. 2014. Quaternionic signal processing techniques for automatic evaluation of dance performances from MoCap data. IEEE Transactions on Multimedia 16, 5 (Aug. 2014), 1391--1406.
[2]
Dimitrios S. Alexiadis, Philip Kelly, Petros Daras, Noel E. O’Connor, Tamy Boubekeur, and Maher Ben Moussa. 2011. Evaluating a dancer’s performance using kinect-based skeleton tracking. In Proceedings of the 19th ACM International Conference on Multimedia (MM’11). ACM, New York, 659--662.
[3]
Okan Arikan, David A. Forsyth, and James F. O’Brien. 2003. Motion synthesis from annotations. ACM Trans. Graph. 22, 3 (July 2003), 402--408.
[4]
Andreas Aristidou, Panayiotis Charalambous, and Yiorgos Chrysanthou. 2015. Emotion analysis and classification: Understanding the performers’ emotions using the LMA entities. Comput. Graph. Forum 34, 6 (Sept. 2015), 262--276.
[5]
Andreas Aristidou, Daniel Cohen-Or, Jessica K. Hodgins, Yiorgos Chrysanthou, and Ariel Shamir. 2018. Deep motifs and motion signatures. ACM Trans. Graph. 38, 6, Article 187 (Nov. 2018), 187:1--187:13 pages.
[6]
Andreas Aristidou, Daniel Cohen-Or, Jessica K. Hodgins, and Ariel Shamir. 2018. Self-similarity analysis for motion capture cleaning. Comput. Graph. Forum 37, 2 (May 2018), 297--309.
[7]
Andreas Aristidou, Efstathios Stavrakis, Panayiotis Charalambous, Yiorgos Chrysanthou, and Stephania Loizidou-Himona. 2015. Folk dance evaluation using Laban Movement Analysis. J. Comput. Cult. Herit. 8, 4 (Aug. 2015), 20:1--20:19.
[8]
Andreas Aristidou, Efstathios Stavrakis, and Yiorgos Chrysanthou. 2014. LMA-based motion retrieval for folk dance cultural heritage. In Proceedings of the 5th International Conference on Cultural Heritage (November 3--8) (EuroMed’14), Marinos Ioannides, Nadia Magnenat-Thalmann, Eleanor Fink, Roko Žarnić, Alex-Yianing Yen, and Ewald Quak (Eds.). Lecture Notes in Computer Science (LNCS), vol. 8740. Springer International Publishing, 404--413.
[9]
Andreas Aristidou, Efstathios Stavrakis, Margarita Papaefthimiou, George Papagiannakis, and Yiorgos Chrysanthou. 2017. Style-based motion analysis for dance composition. The Visual Computer (2017).
[10]
Andreas Aristidou, Efstathios Stavrakis, Margarita Papaefthimiou, George Papagiannakis, and Yiorgos Chrysanthou. 2018. Style-based motion analysis for dance composition. Vis. Comput. 34, 12 (2018), 1725--1737.
[11]
Andreas Aristidou, Qiong Zeng, Efstathios Stavrakis, Kangkang Yin, Daniel Cohen-Or, Yiorgos Chrysanthou, and Baoquan Chen. 2017. Emotion control of unstructured dance movements. In Proceedings of the ACM SIGGRAPH / Eurographics Symposium on Computer Animation (SCA’17). ACM, New York, 9:1--9:10.
[12]
Murtha Baca. 2014. Introduction to Metadata (3rd ed.). Getty Research Institute, Los Angels, CA, USA.
[13]
Philippe Beaudoin, Stelian Coros, Michiel van de Panne, and Pierre Poulin. 2008. Motion-motif graphs. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’08). Eurographics Association, 117--126.
[14]
Jürgen Bernard, Eduard Dobermann, Anna Vögele, Björn Krüger, Jörn Kohlhammer, and Dieter Fellner. 2017. Visual-interactive semi-supervised labeling of human motion capture data. In Proceedings of Visualization and Data Analysis (VDA’17). Society for Imaging Science and Technology, 34--45.
[15]
Jürgen Bernard, Nils Wilhelm, Björn Krüger, Thorsten May, Tobias Schreck, and Jörn Kohlhammer. 2013. MotionExplorer: Exploratory search in human motion capture data based on hierarchical aggregation. IEEE Transactions on Visualization and Computer Graphics 19, 12 (Dec. 2013), 2257--2266.
[16]
Leonid Blouvshtein and Daniel Cohen-Or. 2018. Outlier detection for robust multi-dimensional scaling. IEEE Trans. Pattern Anal. Mach. Intell. (2018).
[17]
Jinxiang Chai and Jessica K. Hodgins. 2005. Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 3 (July 2005), 686--696.
[18]
Jacky C. P. Chan, Howard Leung, Jeff K. T. Tang, and Taku Komura. 2011. A virtual reality dance training system using motion capture technology. IEEE Transactions on Learning Technologies 4, 2 (April 2011), 187--195.
[19]
Giannis Chantas, Sotiris Karavarsamis, Spiros Nikolopoulos, and Yiannis Kompatsiaris. 2018. A probabilistic, ontological framework for safeguarding the intangible cultural heritage. J. Comput. Cult. Herit. 11 (2018).
[20]
Min-Wen Chao, Chao-Hung Lin, Jackie Assa, and Tong-Yee Lee. 2012. Human motion retrieval from hand-drawn sketch. IEEE Transactions on Visualization and Computer Graphics 18, 5 (May 2012), 729--740.
[21]
Songle Chen, Zhengxing Sun, and Yan Zhang. 2015. Scalable organization of collections of motion capture data via quantitative and qualitative analysis. In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval (ICMR’15). 411--418.
[22]
Suepphong Chernbumroong, Pradorn Sureephong, Karim Tabia, and Yoeven D. Khemlani. 2018. Thai dance training game-based model. In Proceedings of the 3rd International Conference on Digital Arts, Media and Technology (ICDAMT’18). IEEE, 194--197.
[23]
Diane Chi, Monica Costa, Liwei Zhao, and Norman Badler. 2000. The EMOTE model for effort and shape. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). ACM Press/Addison-Wesley Publishing Co., New York, 173--182.
[24]
Myung G. Choi, Kyungyong Yang, Takeo Igarashi, Jun Mitani, and Jehee Lee. 2012. Retrieval and visualization of human motion data via stick figures. Comput. Graph. Forum 31, 7 (2012), 2057--2065.
[25]
CMU. 2019. Carnegie Mellon University MoCap Database: http://mocap.cs.cmu.edu/.
[26]
Bruce Croft, Donald Metzler, and Trevor Strohman. 2009. Search Engines: Information Retrieval in Practice (1st ed.). Addison-Wesley Publishing Company.
[27]
Liqun Deng, Howard Leung, Naijie Gu, and Yang Yang. 2011. Real-time mocap dance recognition for an interactive dancing game. Comput. Animat. Virtual Worlds 22, 2--3 (2011), 229--237.
[28]
Zhigang Deng, Qin Gu, and Qing Li. 2009. Perceptually consistent example-based human motion retrieval. In Proceedings of the Symposium on Interactive 3D Graphics and Games (I3D’09). 191--198.
[29]
DMCD. 2019. Dance Motion Capture Database: http://dancedb.cs.ucy.ac.cy/.
[30]
Anastasios Doulamis, Athanasios Voulodimos, Nikolaos Doulamis, Sofia Soile, and Anastasios Lampropoulos. 2017. Transforming intangible folkloric performing arts into tangible choreographic digital objects: The terpsichore approach. In Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 5, (VISAPP). INSTICC, SciTePress, 451--460.
[31]
Katerina El Raheb and Yannis Ioannidis. 2012. A labanotation based ontology for representing dance movement. In Proceedings of the 9th International Conference on Gesture and Sign Language in Human-Computer Interaction and Embodied Communication (GW’11). Springer-Verlag, Berlin, 106--117.
[32]
Katerina El Raheb and Yannis Ioannidis. 2013. Dance in the world of data and objects. In Information Technologies for Performing Arts, Media Access, and Entertainment, Paolo Nesi and Raffaella Santucci (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 192--204.
[33]
Katerina El Raheb, Aristotelis Kasomoulis, Akrivi Katifori, Marianna Rezkalla, and Yannis Ioannidis. 2018. A web-based system for annotation of dance multimodal recordings by dance practitioners and experts. In Proceedings of the 5th International Conference on Movement and Computing (MOCO’18). ACM, New York, Article 8, 8:1--8:8 pages.
[34]
Katerina El Raheb, Nicolas Papapetrou, Vivi Katifori, and Yannis Ioannidis. 2016. BalOnSe: Ballet ontology for annotating and searching video performances. In Proceedings of the 3rd International Symposium on Movement and Computing (MOCO’16). ACM, New York, 5:1--5:8.
[35]
Katerina El Raheb, George Tsampounaris, Akrivi Katifori, and Yannis Ioannidis. 2018. Choreomorphy: A whole-body interaction experience for dance improvisation and visual experimentation. In Proceedings of the 2018 International Conference on Advanced Visual Interfaces (AVI’18). ACM, New York, 27:1--27:9.
[36]
Slim Essid, Dimitrios Alexiadis, Robin Tournemenne, Marc Gowing, Philip Kelly, David Monaghan, Petros Daras, Angelique Drémeau, and Noel E. O’Connor. 2012. An advanced virtual dance performance evaluator. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2269--2272.
[37]
Brian S. Everitt, Sabine Landau, and Morven Leese. 2009. Cluster Analysis (4th ed.). Wiley Publishing.
[38]
Kevin Forbes and Eugene Fiume. 2005. An efficient search algorithm for motion data using weighted PCA. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’05). ACM, New York, 67--76.
[39]
Eftychia Fotiadou, Ioannis Kapsouras, Nikos Nikolaidis, and Anastasios Tefas. 2016. A bag of words approach for recognition of Greek folk dances. In Proceedings of the 9th Hellenic Conference on Artificial Intelligence (SETN’16). ACM, New York, 21:1--21:4.
[40]
Brendan J. Frey and Delbert Dueck. 2007. Clustering by passing messages between data points. Science 315 (2007), 972--976.
[41]
Satoru Fukayama and Masataka Goto. 2014. Automated choreography synthesis using a Gaussian process leveraging consumer-generated dance motions. In Proceedings of the 11th Conference on Advances in Computer Entertainment Technology (ACE’14). ACM, New York, 23:1--23:6.
[42]
Stamatios Giannoulakis, Nicolas Tsapatsoulis, and Nikos Grammalidis. 2018. Metadata for intangible cultural heritage - the case of folk dances. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISAPP), Francisco H. Imai, Alain Trèmeau, and Josè Braz (Eds.). SciTePress, 634--645.
[43]
Michael Good. 2001. MusicXML for notation and analysis. The Virtual Score: Representation, Retrieval, Restoration. 12 (2001), 113--124.
[44]
Nikolaos Grammalidis, Kosmas Dimitropoulos, Filareti Tsalakanidou, Alexandros Kitsikidis, Pierre Roussel, Bruce Denby, P. Chawah, Lise Buchman, Stèphane Dupont, Sohaib Laraba, Benjamin Picart, Mickaël Tits, Joëlle Tilmanne, Stelios Hadjidimitriou, L. Hadjileontiadis, V. Charisis, Christina Volioti, A. Stergiaki, Athanasios Manitsaris, Odysseas Bouzos, and Sotiris Manitsaris. 2016. The i-treasures intangible cultural heritage dataset. In Proceedings of the 3rd International Symposium on Movement and Computing (MOCO’16). ACM, New York, 23:1--23:8.
[45]
Ann Hutchinson Guest. 2013. Labanotation: The System of Analyzing and Recording Movement (4th ed.). Routledge, New York, NY, USA.
[46]
Joseph F. Hair, Jr., Rolph E. Anderson, Ronald L. Tatham, and William C. Black. 1995. Multivariate Data Analysis (4th Ed.): With Readings. Prentice-Hall, Inc., Upper Saddle River, NJ.
[47]
Jonathan Hatol. 2006. MovementXML: A Representation of Semantics of Human Movement Based on Labanotation. Master’s thesis. Interactive Arts and Technology - Simon Fraser University.
[48]
Diane I. Hillmann, Rhonda Marker, and Chris Brady. 2008. Metadata standards and applications. The Serials Librarian 54 (2008), 7--21. Issue 1--2.
[49]
Shi-Sheng Huang, Ariel Shamir, Chao-Hui Shen, Hao Zhang, Alla Sheffer, Shi-Min Hu, and Daniel Cohen-Or. 2013. Qualitative organization of collections of shapes via quartet analysis. ACM Trans. Graph. 32, 4, Article 71 (July 2013), 71:1--71:10 pages.
[50]
Minsu Jang, D. Kim, Y. Kim, and Jaehong Kim. 2017. Automated dance motion evaluation using dynamic time warping and Laban movement analysis. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE’17). 141--142.
[51]
Yu Jin, Xiaoxiang Hu, and GangShan Wu. 2012. A tai chi training system based on fast skeleton matching algorithm. In Proceedings of the 12th International Conference on Computer Vision - Volume Part III (ECCV’12). Springer-Verlag, Berlin, 667--670.
[52]
Adrienne L. Kaeppler. 2000. Dance ethnology and the anthropology of dance. Dance Research Journal 32, 1 (2000), 116--125.
[53]
Rajkumar Kannan, Frederic Andres, and Christian Guetl. 2010. DanVideo: An MPEG-7 authoring and retrieval system for dance videos. Multimedia Tools Appl. 46, 2--3 (Jan. 2010), 545--572.
[54]
Mubbasir Kapadia, I-kao Chiang, Tiju Thomas, Norman I. Badler, and Joseph T. Kider, Jr. 2013. Efficient motion retrieval in large motion databases. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D’13). 19--28.
[55]
Ioannis Kapsouras and Nikos Nikolaidis. 2014. Action recognition on motion capture data using a dynemes and forward differences representation. J. Vis. Comun. Image Represent. 25, 6 (Aug. 2014), 1432--1445.
[56]
Eamonn Keogh, Themistoklis Palpanas, Victor B. Zordan, Dimitrios Gunopulos, and Marc Cardle. 2004. Indexing large human-motion databases. In Proceedings of the International Conference on Very Large Data Bases (VLDB’04). 780--791.
[57]
Iris Kico, Nikos Grammalidis, Yiannis Christidis, and Fotis Liarokapis. 2018. Digitization and visualization of folk dances in cultural heritage: A review. Inventions 3, 4 (2018).
[58]
Eugenia S. Kim. 2011. ChoreoSave: A digital dance preservation system prototype. Proceedings of the American Society for Information Science and Technology 48, 1 (2011), 1--10.
[59]
Alexandros Kitsikidis, Kosmas Dimitropoulos, Stella Douka, and Nikos Grammalidis. 2014. Dance analysis using multiple kinect sensors. In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP), Vol. 2. 789--795.
[60]
Alexandros Kitsikidis, Kosmas Dimitropoulos, Deniz Uğurca, Can Bayçay, Erdal Yilmaz, Filareti Tsalakanidou, Stella Douka, and Nikos Grammalidis. 2015. A game-like application for dance learning using a natural human computer interface. In Universal Access in Human-Computer Interaction. Access to Learning, Health and Well-Being, Margherita Antona and Constantine Stephanidis (Eds.). Springer International Publishing, Cham, 472--482.
[61]
Lucas Kovar and Michael Gleicher. 2004. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23, 3 (Aug. 2004), 559--568.
[62]
Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion graphs. ACM Trans. Graph. 21, 3 (July 2002), 473--482.
[63]
Björn Krüger, Jochen Tautges, Andreas Weber, and Arno Zinke. 2010. Fast local and global similarity searches in large motion capture databases. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’10). Eurographics Assoc., 1--10.
[64]
Matthew Kyan, Guoyu Sun, Haiyan Li, Ling Zhong, Paisarn Muneesawang, Nan Dong, Bruce Elder, and Ling Guan. 2015. An approach to ballet dance training through MS kinect and visualization in a CAVE virtual reality environment. ACM Trans. Intell. Syst. Technol. 6, 2 (March 2015), 23:1--23:37.
[65]
Sohaib Laraba and Joëlle Tilmanne. 2016. Dance performance evaluation using hidden markov models. Comput. Animat. Virtual Worlds 27, 3--4 (May 2016), 321--329.
[66]
Jehee Lee, Jinxiang Chai, Paul S. A. Reitsma, Jessica K. Hodgins, and Nancy S. Pollard. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3 (July 2002), 491--500.
[67]
Jongwook Lee and Boncheol Goo. 2014. A study on the e-learning for Korean traditional dance. In Proceedings of the International Conference on Virtual Systems Multimedia (VSMM). 240--245.
[68]
Guodong Liu, Jingdan Zhang, Wei Wang, and Leonard McMillan. 2005. A system for analyzing and indexing human-motion databases. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’05). 924--926.
[69]
Irene Lourdi, Christos Papatheodorou, and Mara Nikolaidou. 2007. A multi-layer metadata schema for digital folklore collections. J. Inf. Sci. 33, 2 (April 2007), 197--213.
[70]
Nadia Magnenat-Thalmann, Dimitrios Protopsaltou, and Evangelia Kavakli. 2008. Learning how to dance using a web 3D platform. In Proceedings of the 6th International Conference on Advances in Web Based Learning (ICWL’07). Springer-Verlag, Berlin, 1--12.
[71]
Anupama Mallik, Santanu Chaudhury, and Hiranmay Ghosh. 2011. Nrityakosha: Preserving the intangible heritage of Indian classical dance. J. Comput. Cult. Herit. 4, 3 (Dec. 2011), 11:1--11:25.
[72]
Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University Press, New York,.
[73]
Meinard Müller, Andreas Baak, and Hans-Peter Seidel. 2009. Efficient and robust annotation of motion capture data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’09). 17--26.
[74]
Meinard Müller and Tido Röder. 2006. Motion templates for automatic classification and retrieval of motion capture data. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’06). Eurographics Association, 137--146.
[75]
Meinard Müller, Tido Röder, and Michael Clausen. 2005. Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24, 3 (July 2005), 677--685.
[76]
Minako Nakamura and Kozaburo Hachimura. 2006. An XML representation of labanotation, LabanXML, and its implementation on the notation editor labaneditor2. Review of the National Center for Digitization 9 (2006), 47--51.
[77]
NUS. 2019. National University of Singapore MoCap Database: http://animation.comp.nus.edu.sg/nusmocap.html.
[78]
PhaseSpace Inc. 2018. Optical Motion Capture Systems: http://www.phasespace.com, Accessed: 01/2019.
[79]
Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching and mining trillions of time series subsequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’12). ACM, New York, 262--270.
[80]
Ioannis Rallis, Nikolaos Doulamis, Anastasios Doulamis, Athanasios Voulodimos, and Vassilios Vescoukis. 2018. Spatio-temporal summarization of dance choreographies. Computers 8 Graphics 73 (2018), 88--101.
[81]
Michalis Raptis, Darko Kirovski, and Hugues Hoppe. 2011. Real-time classification of dance gestures from skeleton animation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’11). 147--156.
[82]
Qaiser Riaz, Björn Krüger, and Andreas Weber. 2016. Relational databases for motion data. Int. J. Innov. Comput. Appl. 7, 3 (Jan. 2016), 119--134.
[83]
Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 2000. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 2 (Nov. 2000), 99--121.
[84]
Anindhya Sankhla, Vinanti Kalangutkar, Himadri B. G. S. Bhuyan, Tanwi Mallick, Vivek Nautiyal, Partha Pratim Das, and Arun Kumar Majumdar. 2017. Automated translation of human postures from kinect data to labanotation. In Proceedings of the 6th National Conference on Computer Vision, Pattern Recognition, Image Processing, and Graphics (NCVPRIPG’17). 494--505.
[85]
Florian Schroff, Dmitry Kalenichenko, and James Philbin. 2015. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15). 815--823.
[86]
George Arthur Frederick Seber. 2008. Multivariate Observations. John Wiley 8 Sons, Inc.
[87]
Simon Senecal, Louis Cuel, Andreas Aristidou, and Nadia Magnenat-Thalmann. 2016. Continuous body emotion recognition system during theater performances. Comput. Animat. Virtual Worlds 27, 3--4 (May 2016), 311--320.
[88]
Takaaki Shiratori and Katsushi Ikeuchi. 2008. Synthesis of dance performance based on analyses of human motion and music. Transactions on Computer Vision and Image Media 1, 1 (June 2008), 34--46.
[89]
Takaaki Shiratori, Atsushi Nakazawa, and Katsushi Ikeuchi. 2006. Dancing-to-music character animation. Comput. Graph. Forum 25, 3 (September 2006), 449--458.
[90]
Miguel-Angel Sicilia. 2014. Handbook of Metadata. World Scientific.
[91]
Sagi Snir and Satish Rao. 2010. Quartets MaxCut: A Divide and conquer quartets algorithm. IEEE/ACM Trans. Comput. Biol. Bioinformatics 7, 4 (Oct. 2010), 704--718.
[92]
Efstathios Stavrakis, Andreas Aristidou, Maria Savva, Stephania Loizidou Himona, and Yiorgos Chrysanthou. 2012. Digitization of Cypriot folk dances. In Proceedings of the 4th International Conference on Progress in Cultural Heritage Preservation (EuroMed’12). Springer-Verlag, Berlin, 404--413.
[93]
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15). 1--9.
[94]
Jeff K. T. Tang, Jacky C. P. Chan, and Howard Leung. 2011. Interactive dancing game with real-time recognition of continuous dance moves from 3D human motion capture. In Proceedings of the International Conference on Ubiquitous Information Management and Communication (ICUIMC’11). ACM, New York, 50:1--50:9.
[95]
Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion doodles: An interface for sketching character motion. ACM Trans. Graph. 23, 3 (Aug. 2004), 424--431.
[96]
Mickaël Tits, Joëlle Tilmanne, and Thierry Dutoit. 2017. Morphology independent feature engineering in motion capture database for gesture evaluation. In Proceedings of the International Conference on Movement Computing (MOCO’17). ACM, New York, 26:1--26:8.
[97]
Georgios Tsampounaris, Katerina El Raheb, Vivi Katifori, and Yannis Ioannidis. 2016. Exploring visualizations in real-time motion capture for dance education. In Proceedings of the Pan-Hellenic Conference on Informatics (PCI’16). ACM, New York, 76:1--76:6.
[98]
UNESCO. 2003. Convention for the Safeguarding of the Intangible Cultural Heritage.
[99]
Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE. J. Mach. Learn. Research 9 (2008), 2579--2605.
[100]
Yingying Wang and Michael Neff. 2015. Deep signatures for indexing and retrieval in large motion databases. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (MIG’15). ACM, New York, 37--45.
[101]
Yang Yang, Howard Leung, Lihua Yue, and Liqun Deng. 2013. Generating a two-phase lesson for guiding beginners to learn basic dance movements. Computers 8 Education 61 (2013), 1--20.
[102]
Peng Ye and Yaolin Zhou. 2013. The framework of chinese intangible cultural heritages metadata standards. In Proceedings of the 2013 International Workshop on Computer Science in Sports (IWCSS’18). Atlantic Press, 194--197.

Cited By

View all
  • (2024)GELENEKSEL DANS REPERTUVARININ ÖĞRETİME UYGUN BİÇİMDE DİJİTALLEŞTİRİLMESİEurasian Journal of Music and Dance10.31722/ejmd.1446390Online publication date: 2-May-2024
  • (2024)Research on Cross-Cultural Digital Communication Strategy of Musical Theatre Dance Based on Pattern Recognition TechnologyApplied Mathematics and Nonlinear Sciences10.2478/amns-2024-29289:1Online publication date: 9-Oct-2024
  • (2024)DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion CaptureACM Transactions on Graphics10.1145/369586544:1(1-14)Online publication date: 14-Sep-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal on Computing and Cultural Heritage
Journal on Computing and Cultural Heritage   Volume 12, Issue 4
January 2020
140 pages
ISSN:1556-4673
EISSN:1556-4711
DOI:10.1145/3372488
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 17 November 2019
Accepted: 01 July 2019
Revised: 01 June 2019
Received: 01 February 2019
Published in JOCCH Volume 12, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dance
  2. categorization tree
  3. intangible cultural heritage
  4. motion and style signatures

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Horizon 2020 Research and Innovation Programme
  • NVIDIA Corporation
  • RESTART 2016-2020 Programmes for Technological Development and Innovation

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)721
  • Downloads (Last 6 weeks)93
Reflects downloads up to 21 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)GELENEKSEL DANS REPERTUVARININ ÖĞRETİME UYGUN BİÇİMDE DİJİTALLEŞTİRİLMESİEurasian Journal of Music and Dance10.31722/ejmd.1446390Online publication date: 2-May-2024
  • (2024)Research on Cross-Cultural Digital Communication Strategy of Musical Theatre Dance Based on Pattern Recognition TechnologyApplied Mathematics and Nonlinear Sciences10.2478/amns-2024-29289:1Online publication date: 9-Oct-2024
  • (2024)DAMO: A Deep Solver for Arbitrary Marker Configuration in Optical Motion CaptureACM Transactions on Graphics10.1145/369586544:1(1-14)Online publication date: 14-Sep-2024
  • (2024)Virtual Instrument Performances (VIP): A Comprehensive ReviewComputer Graphics Forum10.1111/cgf.1506543:2Online publication date: 30-Apr-2024
  • (2024)TFAN: Twin-Flow Axis Normalization for Human Motion PredictionIEEE Signal Processing Letters10.1109/LSP.2024.335811131(486-490)Online publication date: 2024
  • (2024)Digitizing traditional dances under extreme clothing: The case study of EyoJournal of Cultural Heritage10.1016/j.culher.2024.02.01167(145-157)Online publication date: May-2024
  • (2024)Dancing in virtual reality as an inclusive platform for social and physical fitness activities: a surveyThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-023-03068-640:6(4055-4070)Online publication date: 1-Jun-2024
  • (2024)DanceFree: A Somatosensory Dance Game Based on 3D Dance Animation Generation AlgorithmHCI in Games10.1007/978-3-031-60692-2_22(323-336)Online publication date: 29-Jun-2024
  • (2023)Application of motion capture technology based on dance big data in dance retrievalApplied Mathematics and Nonlinear Sciences10.2478/amns.2023.2.000098:2(2927-2938)Online publication date: 5-Jul-2023
  • (2023)Research on innovative cultivation mode of English and American literature translation talents based on internet environmentApplied Mathematics and Nonlinear Sciences10.2478/amns.2023.1.002019:1Online publication date: 2-Jun-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media