[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3331184.3331253acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Information Needs, Queries, and Query Performance Prediction

Published: 18 July 2019 Publication History

Abstract

The query performance prediction (QPP) task is to estimate the effectiveness of a search performed in response to a query with no relevance judgments. Existing QPP methods do not account for the effectiveness of a query in representing the underlying information need. We demonstrate the far-reaching implications of this reality using standard TREC-based evaluation of QPP methods: their relative prediction quality patterns vary with respect to the effectiveness of queries used to represent the information needs. Motivated by our findings, we revise the basic probabilistic formulation of the QPP task by accounting for the information need and its connection to the query. We further explore this connection by proposing a novel QPP approach that utilizes information about a set of queries representing the same information need. Predictors instantiated from our approach using a wide variety of existing QPP methods post prediction quality that substantially transcends that of applying these methods, as is standard, using a single query representing the information need. Additional in-depth empirical analysis of different aspects of our approach further attests to the crucial role of query effectiveness in QPP.

Supplementary Material

MP4 File (cite1-11h40-d2.mp4)

References

[1]
G. Amati, C. Carpineto, and G. Romano. 2004. Query difficulty, robustness, and selective application of query expansion. In Proc. of ECIR. 127--137.
[2]
J. A. Aslam and V. Pavlu. 2007. Query Hardness Estimation Using Jensen-Shannon Divergence Among Multiple Scoring Functions. In Proc. of ECIR. 198--209.
[3]
P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2016. UQV100: A Test Collection with Query Variability. In Proc. of SIGIR. 725--728.
[4]
P. Bailey, A. Moffat, F. Scholer, and P. Thomas. 2017. Retrieval Consistency in the Presence of Query Variations. In Proc. of SIGIR. 395--404.
[5]
N. Balasubramanian and J. Allan. 2010. Learning to select rankers. In Proc. of SIGIR. 855--856.
[6]
N. J. Belkin, C. C., W. B. Croft, and J. P. Callan. 1993. The effect of multiple query representations on information retrieval system performance. In Proc. of SIGIR. 339--346.
[7]
N. J. Belkin, P. Kantor, E. A. Fox, and J. A. Shaw. 1995. Combining evidence of multiple query representation for information retrieval. Information Processing and Management, Vol. 31, 3 (1995), 431--448.
[8]
R. Benham and J. S. Culpepper. 2017. Risk-Reward Trade-offs in Rank Fusion. In Proc. of ADCS. 1--8.
[9]
Y. Bernstein, B. Billerbeck, S. Garcia, N. Lester, F. Scholer, and J. Zobel. 2005. RMIT University at TREC 2005: Terabyte and Robust Track. In Proc. of TREC-14.
[10]
D. Carmel and E. Yom-Tov. 2010. Estimating the Query Difficulty for Information Retrieval. Morgan & Claypool Publishers.
[11]
D. Carmel, E. Yom-Tov, A. Darlow, and D. Pelleg. 2006. What makes a query difficult? In Proc. of SIGIR. 390--397.
[12]
A.-G. Chifu, L. Laporte, J. Mothe, and Md Z. Ullah. 2018. Query Performance Prediction Focused on Summarized Letor Features. In Proc. of SIGIR. 1177--1180.
[13]
N. Craswell and M. Szummer. 2007. Random walks on the click graph. In Proc. of SIGIR. 239--246.
[14]
S. Cronen-Townsend, Y. Zhou, and W. B. Croft. 2002. Predicting query performance. In Proc. of SIGIR. 299--306.
[15]
S. Cronen-Townsend, Y. Zhou, and W. B. Croft. 2004. A Language Modeling Framework for Selective Query Expansion. Technical Report IR-338. Center for Intelligent Information Retrieval, University of Massachusetts.
[16]
R. Cummins. 2011. Predicting Query Performance Directly from Score Distributions. In Proc. of AIRS. 315--326.
[17]
R. Cummins. 2014. Document Score Distribution Models for Query Performance Inference and Prediction. ACM Transactions on Information Systems, Vol. 32, 1 (2014), 2.
[18]
R. Cummins, J. M. Jose, and C. O'Riordan. 2011. Improved query performance prediction using standard deviation. In Proc. of SIGIR. 1089--1090.
[19]
V. Dang, M. Bendersky, and W. B. Croft. 2010. Learning to rank query reformulations. In In Proc. of SIGIR. 807--808.
[20]
F. Diaz. 2007. Performance prediction using spatial autocorrelation. In Proc. of SIGIR. 583--590.
[21]
C. Hauff, L. Azzopardi, and D. Hiemstra. 2009. The Combination and Evaluation of Query Performance Prediction Methods. In Proc. of ECIR. 301--312.
[22]
C. Hauff, D. Hiemstra, and F. de Jong. 2008. A survey of pre-retrieval query performance predictors. In Proc. of CIKM. 1419--1420.
[23]
B. He and I. Ounis. 2004. Inferring Query Performance Using Pre-retrieval Predictors. In Proc. of SPIRE. 43--54.
[24]
R. Jones, B. Rey, O. Madani, and W. Greiner. 2006. Generating query substitutions. In Proc. of WWW. 387--396.
[25]
O. Kurland, A. Shtok, S. Hummel, F. Raiber, D. Carmel, and O. Rom. 2012. Back to the Roots: A Probabilistic Framework for Query-performance Prediction. In Proc. of CIKM. 823--832.
[26]
K. Kwok, L. Grunfeld, H. Sun, P. Deng, and N. Dinstl. 2004. TREC 2004 Robust Track Experiments using PIRCS. In Proc. of TREC-13.
[27]
V. Lavrenko and W. B. Croft. 2001. Relevance-Based Language Models. In Proc. of SIGIR. 120--127.
[28]
D. Metzler and W. B. Croft. 2005. A Markov random field model for term dependencies. In Proc. of SIGIR. 472--479.
[29]
J. Mothe and L. Tanguy. 2005. Linguistic features to predict query difficulty. In ACM SIGIR 2005 Workshop on Predicting Query Difficulty - Methods and Applications. http://www.haifa.il.ibm.com/sigir05-qp/papers/Mothe.pdf
[30]
J. Pérez-Iglesias and L. Araujo. 2010. Standard Deviation as a Query Hardness Estimator. In Proc. of SPIRE. 207--212.
[31]
F. Raiber and O. Kurland. 2014. Query-performance prediction: Setting the expectations straight. In Proc. of SIGIR. 13--22.
[32]
S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. 1994. Okapi at TREC-3. In Proc. of TREC-3.
[33]
H. Roitman. 2018. An Extended Query Performance Prediction Framework Utilizing Passage-Level Information. In Proc. of ICTIR. 35--42.
[34]
H. Roitman. 2018. Query Performance Prediction using Passage Information. In Proc. of SIGIR. 893--896.
[35]
H. Roitman, S. Erera, O. S. Shalom, and B. Weiner. 2017. Enhanced Mean Retrieval Score Estimation for Query Performance Prediction. In Proc. of ICTIR. 35--42.
[36]
H. Roitman, S. Erera, and B. Weiner. 2017. Robust Standard Deviation Estimation for Query Performance Prediction. In Proc. of ICTIR. 245--248.
[37]
H. Scells, L. Azzopardi, G. Zuccon, and B. Koopman. 2018. Query Variation Performance Prediction for Systematic Reviews. In Proc. of SIGIR. 1089--1092.
[38]
F. Scholer and S. Garcia. 2009. A case for improved evaluation of query difficulty prediction. In Proc. of SIGIR. 640--641.
[39]
F. Scholer, H. E. Williams, and A. Turpin. 2004. Query association surrogates for Web search. JASIST, Vol. 55, 7 (2004), 637--650.
[40]
D. Sheldon, M. Shokouhi, M. Szummer, and N. Craswell. 2011. LambdaMerge: merging the results of query reformulations. In Proc. of WSDM. 795--804.
[41]
A. Shtok, O. Kurland, and D. Carmel. 2009. Predicting query performance by query-drift estimation. In Proc. of ICTIR. 305--312.
[42]
A. Shtok, O. Kurland, and D. Carmel. 2010. Using statistical decision theory and relevance models for query-performance prediction. In Proccedings of SIGIR. 259--266.
[43]
A. Shtok, O. Kurland, and D. Carmel. 2016. Query Performance Prediction Using Reference Lists. ACM Trans. Inf. Syst., Vol. 34, 4 (2016), 19:1--19:34.
[44]
M. Sondak, A. Shtok, and O. Kurland. 2013. Estimating query representativeness for query-performance prediction. In Proc. of SIGIR. 853--856.
[45]
F. Song and W. B. Croft. 1999. A general language model for information retrieval. In Proc. of SIGIR. 279--280.
[46]
K. Sparck Jones, S. Walker, and S. E. Robertson. 2000. A probabilistic model of information retrieval: development and comparative experiments - Part 1. Information Processing and Management, Vol. 36, 6 (2000), 779--808.
[47]
Y. Tao and S. Wu. 2014. Query Performance Prediction By Considering Score Magnitude and Variance Together. In Proc. of CIKM. 1891--1894.
[48]
P. Thomas, F. Scholer, P. Bailey, and A. Moffat. 2017. Tasks, Queries, and Rankers in Pre-Retrieval Performance Prediction. In Proc. of ADCS. 11:1--11:4.
[49]
S. Tomlinson. 2004. Robust, Web and Terabyte Retrieval with Hummingbird Search Server at TREC 2004. In Proc. of TREC-13.
[50]
Eduardo Vicente-López, Luis M. Campos, Juan M. Fernández-Luna, and Juan F. Huete. 2018. Predicting IR Personalization Performance Using Pre-retrieval Query Predictors. J. Intell. Inf. Syst., Vol. 51, 3 (2018), 597--620.
[51]
V. Vinay, I. J. Cox, N. Milic-Frayling, and K. R. Wood. 2006. On ranking the effectiveness of searches. In Proc. of SIGIR. 398--404.
[52]
E. M. Voorhees and D. K. Harman. 2005. TREC: Experiments and evaluation in information retrieval. The MIT Press.
[53]
W. Webber, A. Moffat, and J. Zobel. 2010. A Similarity Measure for Indefinite Rankings. ACM Trans. Inf. Syst., Vol. 28, 4, Article 20 (Nov. 2010), 38 pages.
[54]
M. Winaver, O. Kurland, and C. Domshlak. 2007. Towards robust query expansion: Model selection in the language model framework to retrieval. In Proc. of SIGIR. 729--730.
[55]
D. Yin, Y. Hu, J. Tang, T. Daly, M. Zhou, H. Ouyang, J. Chen, C. Kang, H. Deng, C. Nobata, J.-M. Langlois, and Y. Chang. 2016. Ranking relevance in yahoo search. In Proc. of KDD. 323--332.
[56]
E. Yom-Tov, S. Fine, D. Carmel, and A. Darlow. 2005. Learning to estimate query difficulty: including applications to missing content detection and distributed information retrieval. In Proc. of SIGIR. 512--519.
[57]
H. Zamani, W. B. Croft, and J. S. Culpepper. 2018. Neural Query Performance Prediction using Weak Supervision from Multiple Signals. In Proc. of SIGIR. 105--114.
[58]
C.-X. Zhai and J. D. Lafferty. 2001. A Study of Smoothing Methods for Language Models Applied to Ad Hoc Information Retrieval. In Proc. of SIGIR. 334--342.
[59]
Y. Zhao, F. Scholer, and Y. Tsegay. 2008. Effective Pre-retrieval Query Performance Prediction Using Similarity and Variability Evidence. In Proc. of ECIR. 52--64.
[60]
Y. Zhou and W. B. Croft. 2006. Ranking robustness: a novel framework to predict query performance. In Proc. of CIKM. 567--574.
[61]
Y. Zhou and W. B. Croft. 2007. Query performance prediction in web search environments. In Proc. of SIGIR. 543--550.

Cited By

View all
  • (2024)Query Variability and Experimental Consistency: A Concerning Case StudyProceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3664190.3672519(35-41)Online publication date: 2-Aug-2024
  • (2024)The Surprising Effectiveness of Rankers trained on Expanded QueriesProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657938(2652-2656)Online publication date: 10-Jul-2024
  • (2023)Towards Query Performance Prediction for Neural Information Retrieval: Challenges and OpportunitiesProceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3578337.3605142(51-63)Online publication date: 9-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGIR'19: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval
July 2019
1512 pages
ISBN:9781450361729
DOI:10.1145/3331184
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 18 July 2019

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. query variations
  2. query-performance prediction
  3. reference queries

Qualifiers

  • Research-article

Funding Sources

Conference

SIGIR '19
Sponsor:

Acceptance Rates

SIGIR'19 Paper Acceptance Rate 84 of 426 submissions, 20%;
Overall Acceptance Rate 792 of 3,983 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)77
  • Downloads (Last 6 weeks)5
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Query Variability and Experimental Consistency: A Concerning Case StudyProceedings of the 2024 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3664190.3672519(35-41)Online publication date: 2-Aug-2024
  • (2024)The Surprising Effectiveness of Rankers trained on Expanded QueriesProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657938(2652-2656)Online publication date: 10-Jul-2024
  • (2023)Towards Query Performance Prediction for Neural Information Retrieval: Challenges and OpportunitiesProceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval10.1145/3578337.3605142(51-63)Online publication date: 9-Aug-2023
  • (2023)A Geometric Framework for Query Performance Prediction in Conversational SearchProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591625(1355-1365)Online publication date: 19-Jul-2023
  • (2023)Characterizing and Early Predicting User Performance for Adaptive Search Path RecommendationProceedings of the Association for Information Science and Technology10.1002/pra2.79960:1(408-420)Online publication date: 22-Oct-2023
  • (2022)Execution Time Prediction for Cypher Queries in the Neo4j Database Using a Learning ApproachSymmetry10.3390/sym1401005514:1(55)Online publication date: 1-Jan-2022
  • (2022)A Relative Information Gain-based Query Performance Prediction Framework with Generated Query VariantsACM Transactions on Information Systems10.1145/354511241:2(1-31)Online publication date: 21-Dec-2022
  • (2022)Can Users Predict Relative Query Effectiveness?Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3477495.3531893(2545-2549)Online publication date: 6-Jul-2022
  • (2022)sMARE: a new paradigm to evaluate and understand query performance prediction methodsInformation Retrieval10.1007/s10791-022-09407-w25:2(94-122)Online publication date: 1-Jun-2022
  • (2022)Groupwise Query Performance Prediction with BERTAdvances in Information Retrieval10.1007/978-3-030-99739-7_8(64-74)Online publication date: 10-Apr-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media