[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Gaussian-product subdivision surfaces

Published: 12 July 2019 Publication History

Abstract

Probabilistic distribution models like Gaussian mixtures have shown great potential for improving both the quality and speed of several geometric operators. This is largely due to their ability to model large fuzzy data using only a reduced set of atomic distributions, allowing for large compression rates at minimal information loss. We introduce a new surface model that utilizes these qualities of Gaussian mixtures for the definition and control of a parametric smooth surface. Our approach is based on an enriched mesh data structure, which describes the probability distribution of spatial surface locations around each vertex via a Gaussian covariance matrix. By incorporating this additional covariance information, we show how to define a smooth surface via a nonlinear probabilistic subdivision operator based on products of Gaussians, which is able to capture rich details at fixed control mesh resolution. This entails new applications in surface reconstruction, modeling, and geometric compression.

Supplementary Material

MP4 File (papers_420.mp4)

References

[1]
Nina Amenta, Sunghee Choi, and Ravi Krishna Kolluri. 2001. The Power Crust. In Proceedings of the Sixth ACM Symposium on Solid Modeling and Applications (SMA '01). ACM, New York, NY, USA, 249--266.
[2]
Matthew Berger, Joshua A. Levine, Luis Gustavo Nonato, Gabriel Taubin, and Claudio T. Silva. 2013. A Benchmark for Surface Reconstruction. ACM Trans. Graph. 32, 2, Article 20 (April 2013), 17 pages.
[3]
Henning Biermann, Adi Levin, and Denis Zorin. 2000. Piecewise Smooth Subdivision Surfaces with Normal Control. In Proc. SIGGRAPH. 113--120.
[4]
Wade Brainerd, Tim Foley, Manuel Kraemer, Henry Moreton, and Matthias Nießner. 2016. Efficient GPU Rendering of Subdivision Surfaces using Adaptive Quadtrees. ACM Transactions on Graphics (TOG) (2016).
[5]
Max Budninskiy, Beibei Liu, Fernando de Goes, Yiying Tong, Pierre Alliez, and Mathieu Desbrun. 2016. Optimal Voronoi Tessellations with Hessian-based Anisotropy. ACM Trans. Graph. 35, 6, Article 242 (Nov. 2016), 12 pages.
[6]
Stephane Calderon and Tamy Boubekeur. 2014. Point Morphology. ACM Transactions on Graphics (Proc. SIGGRAPH 2014) (2014).
[7]
Edwin Catmull and James Clark. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6 (1978), 350 -- 355.
[8]
David Cohen-Steiner and Frank Da. 2004. A Greedy Delaunay-based Surface Reconstruction Algorithm. Vis. Comput. 20, 1 (April 2004), 4--16.
[9]
Martin Danelljan, Giulia Meneghetti, Fahad S. Khan, and Michael Felsberg. 2016. A Probabilistic Framework for Color-Based Point Set Registration. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 1818--1826.
[10]
Arthur P. Dempster, Natalie Laird, and Donald Rubin. 1977. Maximum likelihood from incomplete data via the EM algorithm. J. Royal Stat. Soc. Ser. B 39, 1 (1977), 1--38.
[11]
Tony DeRose, Michael Kass, and Tien Truong. 1998. Subdivision Surfaces in Character Animation. In Proc. SIGGRAPH. 85--94.
[12]
Meenakshisundaram Gopi, Shankar Krishnan, and Cláudio T. Silva. 2000. Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation. Computer Graphics Forum 19, 3 (2000), 467--478.
[13]
Philipp Grohs. 2009. Smoothness of interpolatory multivariate subdivision in Lie groups. IMA J. Numer. Anal. 29 (07 2009).
[14]
Philipp Grohs. 2010. A General Proximity Analysis of Nonlinear Subdivision Schemes. SIAM J. Math. Analysis 42 (01 2010), 729--750.
[15]
Richard D. Hill and Steven R. Waters. 1987. On the cone of positive semidefinite matrices. Linear Algebra Appl. 90 (1987), 81 -- 88.
[16]
Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John McDonald, Jean Schweitzer, and Werner Stuetzle. 1994. Piecewise Smooth Surface Reconstruction. In Proc. SIGGRAPH. 295--302.
[17]
Uri Itai and Nir Sharon. 2013. Subdivision Schemes for Positive Definite Matrices. Foundations of Computational Mathematics 13, 3 (01 Jun 2013), 347--369.
[18]
Bing Jian and Baba C. Vemuri. 2011. Robust Point Set Registration Using Gaussian Mixture Models. IEEE Trans. Pattern Anal. Mach. Intell. 33, 8 (Aug. 2011), 1633--1645.
[19]
Thomas Kailath. 1967. The Divergence and Bhattacharyya Distance Measures in Signal Selection. IEEE Trans. on Communication Technology 15, 1 (February 1967), 52--60.
[20]
Kestutis Karčiauskas and Jörg Peters. 2007. Concentric Tessellation Maps and Curvature Continuous Guided Surfaces. Comput. Aided Geom. Des. 24, 2 (2007), 99--111.
[21]
Kestutis Karčiauskas and Jörg Peters. 2018. A New Class of Guided C2 Subdivision Surfaces Combining Good Shape with Nested Refinement. Computer Graphics Forum 37, 6 (2018), 84--95.
[22]
Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages.
[23]
Adi Levin. 2006. Modified Subdivision Surfaces with Continuous Curvature. ACM Trans. Graph. 25, 3 (2006), 1035--1040.
[24]
Ruosi Li, Lu Liu, Ly Phan, Sasakthi Abeysinghe, Cindy Grimm, and Tao Ju. 2010. Polygonizing Extremal Surfaces with Manifold Guarantees. In Proc. of the 14th ACM Symposium on Solid and Physical Modeling (SPM '10). ACM, New York, 189--194.
[25]
Lars Linsen and Hartmut Prautzsch. 2003. Fan Clouds - An Alternative To Meshes. In Geometry, Morphology, and Computational Imaging, Tetsuo Asano, Reinhard Klette, and Christian Ronse (Eds.). Lecture Notes in Computer Science, Vol. 2616. Springer, Berlin, Germany, 39--57.
[26]
Charles Loop. 1987. Smooth Subdivision Surfaces Based on Triangles. Ph.D. Dissertation.
[27]
Matthias Nießner, Charles Loop, Mark Meyer, and Tony DeRose. 2012. Feature-adaptive GPU rendering of Catmull-Clark subdivision surfaces. ACM Trans. Graph. (TOG) 31, 1 (2012), 6.
[28]
Umut Ozertem and Deniz Erdogmus. 2011. Locally Defined Principal Curves and Surfaces. Journal of Machine Learning Research 12 (2011), 1249--1286.
[29]
Reinhold Preiner, Oliver Mattausch, Murat Arikan, Renato Pajarola, and Michael Wimmer. 2014. Continuous Projection for Fast L1 Reconstruction. ACM Transactions on Graphics (Proc. of ACM SIGGRAPH 2014) 33, 4 (Aug. 2014), 47:1--47:13.
[30]
Mael Rouxel-Labbé, Mathijs Wintraecken, and Jean-Daniel Boissonnat. 2016. Discretized Riemannian Delaunay triangulations. In Proceedings 25th International Meshing Roundtable (IMR25). Elsevier, Washington DC, United States.
[31]
Scott Schaefer, Etienne Vouga, and Ron Goldman. 2008. Nonlinear subdivision through nonlinear averaging. Computer Aided Geometric Design 25, 3 (2008), 162 -- 180.
[32]
Jos Stam. 1998. Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Parameter Values. In Proc. of the 25th Annual Conf. on Computer Graphics and Interactive Techniques (SIGGRAPH '98). ACM, New York, NY, USA, 395--404.
[33]
Jos Stam. 1999. Evaluation of Loop Subdivision Surfaces. In SIGGRAPH '99 Course Notes.
[34]
Jochen Süßmuth and Günther Greiner. 2007. Ridge Based Curve and Surface Reconstruction. In Proc. of the Fifth Eurographics Symposium on Geometry Processing (SGP '07). Eurographics Association, Aire-la-Ville, Switzerland, 243--251.
[35]
Nuno Vasconcelos and Andrew Lippman. 1999. Learning Mixture Hierarchies. In Advances in Neural Information Processing Systems 11, M. J. Kearns, S. A. Solla, and D. A. Cohn (Eds.). MIT Press, 606--612.
[36]
Amir Vaxman, Christian Müller, and Ofir Weber. 2018. Canonical Möbius Subdivision. ACM Trans. Graph. 37, 6, Article 227 (Dec. 2018), 15 pages.
[37]
Johannes Wallner. 2014. On Convergent Interpolatory Subdivision Schemes in Riemannian Geometry. Constructive Approximation 40 (12 2014).
[38]
Johannes Wallner and Nira Dyn. 2005. Convergence and C1 analysis of subdivision schemes on manifolds by proximity. Computer Aided Geomtric Design 22, 7 (2005), 593 -- 622.
[39]
Johannes Wallner, Esfandiar Nava Yazdani, and Andreas Weinmann. 2011. Convergence and smoothness analysis of subdivision rules in Riemannian and symmetric spaces. Advances in Computational Mathematics 34, 2 (01 Feb 2011), 201--218.
[40]
Andreas Weinmann. 2010. Nonlinear Subdivision Schemes on Irregular Meshes. Constructive Approximation 31, 3 (01 Jun 2010), 395--415.
[41]
Xunnian Yang. 2016. Matrix Weighted Rational Curves and Surfaces. Comput. Aided Geom. Des. 42, C (2016), 40--53.
[42]
Denis Zorin and Peter Schroder. 2000. Subdivision for Modeling and Animation. In ACM SIGGRAPH Course.

Cited By

View all
  • (2021)An improved Loop subdivision to coordinate the smoothness and the number of faces via multi-objective optimizationIntegrated Computer-Aided Engineering10.3233/ICA-210661(1-19)Online publication date: 23-Jul-2021
  • (2021)I♥LAACM Transactions on Graphics10.1145/3478513.348050640:6(1-14)Online publication date: 10-Dec-2021
  • (2021)Geometric Granularity Aware Pixel-to-Mesh2021 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV48922.2021.01285(13077-13086)Online publication date: Oct-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 38, Issue 4
August 2019
1480 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3306346
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2019
Published in TOG Volume 38, Issue 4

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. covariance mesh
  2. gaussian mixtures
  3. subdivision surfaces
  4. triangulation

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)229
  • Downloads (Last 6 weeks)45
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)An improved Loop subdivision to coordinate the smoothness and the number of faces via multi-objective optimizationIntegrated Computer-Aided Engineering10.3233/ICA-210661(1-19)Online publication date: 23-Jul-2021
  • (2021)I♥LAACM Transactions on Graphics10.1145/3478513.348050640:6(1-14)Online publication date: 10-Dec-2021
  • (2021)Geometric Granularity Aware Pixel-to-Mesh2021 IEEE/CVF International Conference on Computer Vision (ICCV)10.1109/ICCV48922.2021.01285(13077-13086)Online publication date: Oct-2021
  • (2020)Neural subdivisionACM Transactions on Graphics10.1145/3386569.339241839:4(124:1-124:16)Online publication date: 12-Aug-2020
  • (2020)Fast and Robust QEF Minimization using Probabilistic QuadricsComputer Graphics Forum10.1111/cgf.1393339:2(325-334)Online publication date: 13-Jul-2020

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media