[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

The Exact Solution of Systems of Linear Equations with Polynomial Coefficients

Published: 01 October 1973 Publication History
First page of PDF

References

[1]
BARzIss, E.H. Sylvester's identity and multistep integer-preserving Gaussian elimination. Math. Comp. $~, 103 (July 1968), 565-578.
[2]
BIRKHOFF, G., AND M^CLANE, S. A Survey of Modern Algebra, 3rd Ed., Macmillan, New York, 1965.
[3]
BODWIG, E. Matrix Calculus. Interscience, New York, 1959.
[4]
BOROSH, I., AND FRANKEL, A.S. Exact solutions of linear equations with rational coefficients by congruence techniques. Math. Comp. SO, 93 (Jan. 1966), 107-112.
[5]
FRAENKEL, A. S., AND LOEWENTHAL, D. Exact solutions of linear equations with rational co* efficients. J. Res. NBS 75B, 1, 2 (Jan.-June, 1971), 67-75.
[6]
BROwN, W.S, HYDE, J.P.,ANDT^GuE, B.A. The ALPAK system for nonnumerical algebra on a digital computer--III : Systems of linear equations and a class of side relations. Bell Syst. Tech. J. 4,S, 2 (July 1964), 1547-1562.
[7]
BROWN, W. S. The compleat Euclidean algorithm. Bell Telephone Labs. Rep., Murray Hill, N.J., June 1968.
[8]
BROWN, W. S. On Euclid's algorithm and the computation of polynomial greatest common divisors. Proc. 2nd Symp. on Symbolic and Algebraic Manipulation, ACM, New York, 1971; also, J. ACM 18, 4 (Oct. 1971), 478-504.
[9]
COLLINS, G. E. Subresultants and reduced polynomial remainder sequences. J. A CM 14, 1 (Jan. 1967), 128--142.
[10]
COLLINS, G.E. Computing time analyses for some arithmetic and algebraic algorithms. Proc. 1968 Summer Inst. on Symbolic Mathematical Computation, R. Tobey, Ed., IBM Federal Systems Ctr., June 1969, pp. 195-232.
[11]
COLLINS, G. E., HEINDEL, L. E., HOROWITZ, E., McCLELLAN, M. T., AND MUSSER, D.R. The SAC-1 modular arithmetic system. Computing Ctr. Tech. Rep. 10, U. of Wisconsin, Madison, Wisc., June 1969.
[12]
COLLINS, G.E. The SAC-1 system: An introduction and survey. Proc. 2nd Symp. on Symbolic and Algebraic Manipulation, ACM, New York, 1971, pp. 144-152.
[13]
COLHNS, G.E. The calculation of multivariate polynomial resultants. Proc. 2nd Symp. on Symbolic and Algebraic Manipulation, ACM, New York, 1971; also, J. ACM 18, 4 (Oct. 1971), 515-532.
[14]
COLLtNS, G.E. The SAC-1 polynomial greatest common divisor and resultant system. Computer Sci. Dep. Teeh. Rep. 145, U. of Wisconsin, Madison, Wisc., Feb. 1972.
[15]
COLm NS, G. E., AND MCCLELLAN, M.T. The SAC-1 polynomial linear algebra system. Computer Sci. Dep. Tech. Rep. 154, U. of Wisconsin, Madison, Wisc., Apr. 1972.
[16]
Fox, L. An Introduction to Numerical Linear Algebra. Clarendon Press, Oxford, 1964.
[17]
GANT~ACHER, F.R. Matrix Theory, Vol. 1. Chelsea, New York, 1959.
[18]
~OWELL, J. A., AND GREGORY, R.T. An algorithm for solving linear algebraic equations using residue arithmetic. BIT 9 (1969), 200-234, 324-337.
[19]
KNUTH, D.E. The Art of Computer Programming, Vol. i (Fundamental Algorithms). Addison- Wesley, Reading, Mass., 1968.
[20]
KNUTH, D.E. The Art of Computer Programming, VoW. ~ (Beminumerical Algorithms). Addison- Wesley, Reading, Mass., 1969.
[21]
LIPSON, J.D. Symbolic methods for the computer solution of linear equations with applications to flow-graphs. Proc. 1968 Summer Inst. on Symbolic Mathematical Computation, Robert Tobey, Ed., IBM Federal Systems Ctr., June 1969, pp. 233-303.
[22]
LIPSON, J.D. Chinese Remainder and interpolation' algorithms. Proc. 2nd Symposium on Symbolic and Algebraic Manipulation, A CM, New York, 1971, pp. 372-398.
[23]
LUTHER, H. A., AND GUSEMAN, L. F. JR. A finite sequentially compact process for the adjoints of matrices over arbitrary integral domains. Comm. ACM 5, 8 (Aug. 1962), 447-445.
[24]
McCLELLAN, M. T. The exact solution of systems of linear equations with polynomial coefficients. Computer Sci. Dep. Tech. Rep. 136 (Ph.D. Th.), U. of Wisconsin, Madison, Wisc., Sept. 1971.
[25]
NEWMAN, M, Solving equations exactly. J. Res. NBS 71B, 4 (Oct.-Dec. 1967), 171-179.
[26]
RALSTON, A. A First Course in Numerical Analysis. McGraw-Hill, New York, 1965.
[27]
ROSSER, J. B. A method of computing exact inverses of matrices with integer coefficients. J. Res. NBS/~9, 5 (Nov. 1952), 349-358.
[28]
TAKAHASI, H., AND ISHIBASHI, Y. A new method for "exact calculation" by digital computer. Information Processing in Japan I (1961), 28-42.

Cited By

View all
  • (2024) -adic reconstruction of rational functions in multiloop amplitudes Physical Review D10.1103/PhysRevD.110.056028110:5Online publication date: 13-Sep-2024
  • (2020)Parametric Markov chains: PCTL complexity and fraction-free Gaussian eliminationInformation and Computation10.1016/j.ic.2019.104504272(104504)Online publication date: Jun-2020
  • (2019)Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes2019 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT.2019.8849582(1542-1546)Online publication date: 7-Jul-2019
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 20, Issue 4
Oct. 1973
172 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/321784
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 1973
Published in JACM Volume 20, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)99
  • Downloads (Last 6 weeks)17
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024) -adic reconstruction of rational functions in multiloop amplitudes Physical Review D10.1103/PhysRevD.110.056028110:5Online publication date: 13-Sep-2024
  • (2020)Parametric Markov chains: PCTL complexity and fraction-free Gaussian eliminationInformation and Computation10.1016/j.ic.2019.104504272(104504)Online publication date: Jun-2020
  • (2019)Polynomial Linear System Solving with Errors by Simultaneous Polynomial Reconstruction of Interleaved Reed-Solomon Codes2019 IEEE International Symposium on Information Theory (ISIT)10.1109/ISIT.2019.8849582(1542-1546)Online publication date: 7-Jul-2019
  • (2018)Epidemic extinction in networks: insights from the 12 110 smallest graphsNew Journal of Physics10.1088/1367-2630/aaf01620:11(113042)Online publication date: 28-Nov-2018
  • (2017)Parametric Markov Chains: PCTL Complexity and Fraction-free Gaussian EliminationElectronic Proceedings in Theoretical Computer Science10.4204/EPTCS.256.2256(16-30)Online publication date: 6-Sep-2017
  • (2017)Early Termination in Parametric Linear System Solving and Rational Function Vector Recovery with Error CorrectionProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087645(237-244)Online publication date: 23-Jul-2017
  • (2014)Numerical linear system solving with parametric entries by error correctionProceedings of the 2014 Symposium on Symbolic-Numeric Computation10.1145/2631948.2631956(33-38)Online publication date: 28-Jul-2014
  • (2014)Finding linear dependencies in integration-by-parts equations: A Monte Carlo approachComputer Physics Communications10.1016/j.cpc.2014.01.017185:5(1473-1476)Online publication date: May-2014
  • (2014)List decoding of number field codesDesigns, Codes and Cryptography10.1007/s10623-013-9803-x72:3(687-711)Online publication date: 1-Sep-2014
  • (2013)Linear differential and difference systemsProgramming and Computing Software10.1134/S036176881302002339:2(91-109)Online publication date: 1-Mar-2013
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media