[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
survey

Multimedia Big Data Analytics: A Survey

Published: 10 January 2018 Publication History

Abstract

With the proliferation of online services and mobile technologies, the world has stepped into a multimedia big data era. A vast amount of research work has been done in the multimedia area, targeting different aspects of big data analytics, such as the capture, storage, indexing, mining, and retrieval of multimedia big data. However, very few research work provides a complete survey of the whole pine-line of the multimedia big data analytics, including the management and analysis of the large amount of data, the challenges and opportunities, and the promising research directions. To serve this purpose, we present this survey, which conducts a comprehensive overview of the state-of-the-art research work on multimedia big data analytics. It also aims to bridge the gap between multimedia challenges and big data solutions by providing the current big data frameworks, their applications in multimedia analyses, the strengths and limitations of the existing methods, and the potential future directions in multimedia big data analytics. To the best of our knowledge, this is the first survey that targets the most recent multimedia management techniques for very large-scale data and also provides the research studies and technologies advancing the multimedia analyses in this big data era.

References

[1]
Veronika Abramova and Jorge Bernardino. 2013. NoSQL databases: MongoDB vs Cassandra. In Proceedings of the International C* Conference on Computer Science and Software Engineering. ACM, 14--22.
[2]
Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici, Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. 2016. YouTube-8M: A large-scale video classification benchmark. CoRR abs/1609.08675 (2016). http://arxiv.org/abs/1609.08675.
[3]
Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamás Vicsek. 2006. CFinder: Locating cliques and overlapping modules in biological networks. Bioinformatics 22, 8 (2006), 1021--1023.
[4]
Fatima Binta Adamu, Adib Habbal, Suhaidi Hassan, R. Les Cottrell, Bebo White, and Ibrahim Abdullahi. 2016. A Survey on Big Data Indexing Strategies. Technical Report. SLAC National Accelerator Laboratory.
[5]
Donald A. Adjeroh and Kingsley C. Nwosu. 1997. Multimedia database management -- Requirements and issues. IEEE MultiMedia 4, 3 (1997), 24--33.
[6]
Emily Adler. 2016. Social media engagement: The surprising facts about how much time people spend on the major social networks. Retrieved from http://www.businessinsider.com/social-media-engagement-statistics-2013-12.
[7]
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. 2011. Big data and cloud computing: Current state and future opportunities. In Proceedings of the 14th International Conference on Extending Database Technology. 530--533.
[8]
Ian F. Akyildiz, Tommaso Melodia, and Kaushik R. Chowdhury. 2007. A survey on wireless multimedia sensor networks. Comput. Netw. 51, 4 (2007), 921--960.
[9]
Jesus Alcala-Fdez, Luciano Sanchez, Salvador Garcia, Maria Jose del Jesus, and others. 2009. KEEL: A software tool to assess evolutionary algorithms for data mining problems. Soft Comput. 13, 3 (2009), 307--318.
[10]
Victor Alvarez, Stefan Richter, Xiao Chen, and Jens Dittrich. 2015. A comparison of adaptive radix trees and hash tables. In Proceedings of the 31st IEEE International Conference on Data Engineering. 1227--1238.
[11]
Flora Amato, Francesco Colace, Luca Greco, Vincenzo Moscato, and Antonio Picariello. 2016. Semantic processing of multimedia data for e-government applications. J. Vis. Lang. Comput. 32 (2016), 35--41.
[12]
Flora Amato, Aniello De Santo, Francesco Gargiulo, Vincenzo Moscato, Fabio Persia, Antonio Picariello, and Silvestro Roberto Poccia. 2015. SemTree: An index for supporting semantic retrieval of documents. In Proceedings of the 31st IEEE International Conference on Data Engineering Workshops. 62--67.
[13]
AWS. 2016. Amazon S3. Retrieved October 16, 2016 from http://aws.amazon.com/s3/.
[14]
Hadoop. 2016. Apache Hadoop. Retrieved April 29, 2016 http://hadoop.apache.org.
[15]
Mahout. 2016. Apache Mahout. Retrieved May 7, 2016 from http://mahout.apache.org.
[16]
Marcos D. Assunção, Rodrigo N. Calheiros, Silvia Bianchi, Marco A. S. Netto, and Rajkumar Buyya. 2015. Big data computing and clouds: Trends and future directions. J. Parallel Distrib. Comput. 79 (2015), 3--15.
[17]
Pradeep K. Atrey, M. Anwar Hossain, Abdulmotaleb El Saddik, and Mohan S. Kankanhalli. 2010. Multimodal fusion for multimedia analysis: A survey. Multimedia Syst. 16, 6 (2010), 345--379.
[18]
Mathieu Bastian, Sebastien Heymann, Mathieu Jacomy, and others. 2009. Gephi: An open source software for exploring and manipulating networks. In Third International Conference on Weblogs and Social Media. CA, USA, 361--362.
[19]
Vladimir Batagelj and Andrej Mrvar. 2004. Pajek—Analysis and visualization of large networks. In Graph Drawing Software. Springer, Berlin, 77--103.
[20]
Eric Bender. 2015. Big data in biomedicine. Nature 527, 7576 (2015), S1--S1.
[21]
Rachid Benmokhtar and Benoit Huet. 2014. An ontology-based evidential framework for video indexing using high-level multimodal fusion. Multimedia Tools Appl. 73, 2 (2014), 663--689.
[22]
Jonathan Bergstrom, Mark Drovdahl, and Sinclair Temple. 2008. Wireless data capture and sharing system, such as image capture and sharing of digital camera images via a wireless cellular network and related tagging of images. (2008). US Patent App. 12/182,952.
[23]
Chidansh Amitkumar Bhatt and Mohan S. Kankanhalli. 2011. Multimedia data mining: State of the art and challenges. Multimedia Tools Appl. 51, 1 (2011), 35--76.
[24]
Jingwen Bian, Yang Yang, and Tat-Seng Chua. 2013. Multimedia summarization for trending topics in microblogs. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management. ACM, 1807--1812.
[25]
Albert Bifet. 2013. Mining big data in real time. Informatica (Slovenia) 37, 1 (2013), 15--20.
[26]
Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. 2010. MOA: Massive online analysis. J. Mach. Learn. Res. 11 (2010), 1601--1604.
[27]
Import.io. 2016. All the best big data tools and how to use them. Retrieved November 16, 2016 from https://www.import.io/post/all-the-best-big-data-tools-and-how-to-use-them/.
[28]
Randal Bryant, Randy H. Katz, and Edward D. Lazowska. 2008. Big-data computing: Creating revolutionary breakthroughs in commerce, science and society. Retreived from https://pdfs.semanticscholar.org/65a8/b00f712ffd5c230bf0de6b9bd13923d20078.pdf.
[29]
Hongming Cai, Boyi Xu, Lihong Jiang, and Athanasios V. Vasilakos. 2017. IoT-based big data storage systems in cloud computing: Perspectives and challenges. IEEE I-o-T J. 4, 1 (2017), 75--87.
[30]
Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. 2008. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26, 2 (2008), 4:1--4:26.
[31]
Yung Fu Chang, C. S. Chen, and Hao Zhou. 2009. Smart phone for mobile commerce. Comput. Stand. Interfaces 31, 4 (2009), 740--747.
[32]
Thibaud Chardonnens. 2013. Big Data Analytics on High Velocity Streams: Specific Use Cases with Storm. Master’s thesis. Software Engineering Group, Department of Informatics, University of Fribourg, Switzerland.
[33]
Kasturi Chatterjee and Shu-Ching Chen. 2006. Affinity hybrid tree: An indexing technique for content-based image retrieval in multimedia databases. In Proceedings of the 8th IEEE International Symposium on Multimedia. IEEE, 47--54.
[34]
Kasturi Chatterjee and Shu-Ching Chen. 2007. A novel indexing and access mechanism using affinity hybrid tree for content-based image retrieval in multimedia databases. Int. J. Semant. Comput. 1, 2 (2007), 147--170.
[35]
Kasturi Chatterjee and Shu-Ching Chen. 2008. Hierarchical affinity hybrid tree: A multidimensional index structure to organize videos and support content-based retrievals. In Proceedings of the IEEE International Conference on Information Reuse and Integration. IEEE, 435--440.
[36]
Kasturi Chatterjee and Shu-Ching Chen. 2010. HAH-tree: Towards a multidimensional index structure supporting different video modelling approaches in a video database management system. Int. J. Inf. Decis. Sci. 2, 2 (2010), 188--207.
[37]
Dunren Che, Mejdl Safran, and Zhiyong Peng. 2013. From big data to big data mining: Challenges, issues, and opportunities. In Database Systems for Advanced Applications. Springer, Wuhan, China, 1--15.
[38]
Chao Chen, Qiusha Zhu, Lin Lin, and Mei-Ling Shyu. 2013. Web media semantic concept retrieval via tag removal and model fusion. ACM Trans. Intell. Syst. Technol. 4, 4 (2013), 61:1--61:22.
[39]
CL Philip Chen and Chun-Yang Zhang. 2014. Data-intensive applications, challenges, techniques and technologies: A survey on big data. Inf. Sci. 275 (2014), 314--347.
[40]
Cindy Xinmin Chen. 2001. Data Models and Query Languages of Spatio-temporal Information. Ph.D. Dissertation. University of California Los Angeles.
[41]
Lei Chen, Jianliang Xu, Christian S. Jensen, and Yafei Li. 2016. YASK: A why-not question answering engine for spatial keyword query services. Proc. VLDB Endow. 9, 13 (2016), 1501--1504.
[42]
Min Chen. 2014. A hierarchical security model for multimedia big data. Int. J. Multimedia Data Eng. Manage. 5, 1 (2014), 1--13.
[43]
Min Chen, Shu-Ching Chen, Mei-Ling Shyu, and Kasun Wickramaratna. 2006. Semantic event detection via multimodal data mining. IEEE Sign. Process. Mag. 23, 2 (2006), 38--46.
[44]
Min Chen, Shiwen Mao, and Yunhao Liu. 2014. Big data: A survey. Mobile Netw. Appl. 19, 2 (2014), 171--209.
[45]
Shu-Ching Chen. 2010. Multimedia databases and data management: A survey. Int. J. Multimedia Data Eng. Manage. 1, 1 (2010), 1--11.
[46]
Shu-Ching Chen and Rangasami L. Kashyap. 2001. A spatio-temporal semantic model for multimedia database systems and multimedia information systems. IEEE Trans. Knowl. Data Eng. 13, 4 (2001), 607--622.
[47]
Shu-Ching Chen, Rangasami Laksminarayana Kashyap, and Arif Ghafoor. 2000. Semantic Models for Multimedia Database Searching and Browsing. Vol. 21. Kluwer Academic Publishers, MA.
[48]
Shu-Ching Chen, Stuart H. Rubin, Mei-Ling Shyu, and Chengcui Zhang. 2006. A dynamic user concept pattern learning framework for content-based image retrieval. IEEE Trans. Syst. Man. Cybernet. C 36, 6 (2006), 772--783.
[49]
Shu-Ching Chen, Mei-Ling Shyu, Srinivas Peeta, and Chengcui Zhang. 2003. Learning-based spatio-temporal vehicle tracking and indexing for transportation multimedia database systems. IEEE Trans. Intell. Trans. Syst. 4, 3 (2003), 154--167.
[50]
Shu-Ching Chen, Mei-Ling Shyu, and Chengcui Zhang. 2005. Innovative shot boundary detection for video indexing. In Video Data Management and Information Retrieval. Idea Group Publishing, Hershey, PA, 217--236.
[51]
Shu-Ching Chen, Mei-Ling Shyu, Chengcui Zhang, and Min Chen. 2006. A multimodal data mining framework for soccer goal detection based on decision tree logic. Int. J. Comput. Appl. Technol. 27, 4 (2006), 312--323.
[52]
Shu-Ching Chen, Mei-Ling Shyu, Chengcui Zhang, Lin Luo, and Min Chen. 2003. Detection of soccer goal shots using joint multimedia features and classification rules. In Proceedings of the 4th International Workshop on Multimedia Data Mining. 36--44.
[53]
Shu-Ching Chen, Mei-Ling Shyu, Chengcui Zhang, and Jeff Strickrott. 2001b. Multimedia data mining for traffic video sequences. In Proceedings of the 2nd International Workshop on Multimedia Data Mining. 78--86.
[54]
Shu-Ching Chen, Mei-Ling Shyu, Cheng-Cui Zhang, and Rangasami L. Kashyap. 2001a. Video scene change detection method using unsupervised segmentation and object tracking. In Proceedings of the IEEE International Conference on Multimedia and Expo. IEEE, 15.
[55]
Shu-Ching Chen, Srinivas Sista, Mei-Ling Shyu, and Rangasami L. Kashyap. 1999. Augmented transition networks as video browsing models for multimedia databases and multimedia information systems. In Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence. IEEE, 175--182.
[56]
Xin Chen, Chengcui Zhang, Shu-Ching Chen, and Min Chen. 2005. A latent semantic indexing based method for solving multiple instance learning problem in region-based image retrieval. In Proceedings of the 7th IEEE International Symposium on Multimedia. IEEE, 37--45.
[57]
Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shelhamer. 2014. cuDNN: Efficient primitives for deep learning. CoRR abs/1410.0759 (2014).
[58]
Ming Cheung, James She, and Zhanming Jie. 2015. Connection discovery using big data of user-shared images in social media. IEEE Trans. Multimedia 17, 9 (2015), 1417--1428.
[59]
Jaegul Choo and Haesun Park. 2013. Customizing computational methods for visual analytics with big data. Comput. Graph. Appl. 33, 4 (2013), 22--28.
[60]
Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. 2009. NUS-WIDE: A real-world web image database from national university of singapore. In Proceedings of the ACM International Conference on Image and Video Retrieval. 48:1--48:9.
[61]
Yang Cong, Shuai Wang, Baojie Fan, Yunsheng Yang, and Haibin Yu. 2016. UDSFS: Unsupervised deep sparse feature selection. Neurocomputing 196 (2016), 150--158.
[62]
Marshall Copeland, Julian Soh, Anthony Puca, Mike Manning, and David Gollob. 2015. Overview of microsoft azure services. In Microsoft Azure. Springer, 27--69.
[63]
Michael Cox and David Ellsworth. 1997. Application-controlled demand paging for out-of-core visualization. In Proceedings of the 8th Conference on Visualization’97. IEEE Computer Society Press, 235--244.
[64]
Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing. 2016. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. In Proceedings of the 11th European Conference on Computer Systems. ACM, 4:1--4:16.
[65]
DataMelt. 2016. DataMelt: Computation and visualization environment. Retrieved May 7, 2016 from http://jwork.org/dmelt/.
[66]
James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston, and others. 2010. The YouTube video recommendation system. In Proceedings of the 4th ACM Conference on Recommender Systems. ACM, 293--296.
[67]
Shuvashis Dey, Arpan Chakraborty, Sourav Naskar, and Prasant Misra. 2012. Smart city surveillance: Leveraging benefits of cloud data stores. In Proceedings of the IEEE 37th Conference on Local Computer Networks Workshops. IEEE, 868--876.
[68]
Jean Pierre Dijcks. 2012. Oracle: Big data for the enterprise. Retrieved from http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf.
[69]
Shengyong Ding, Liang Lin, Guangrun Wang, and Hongyang Chao. 2015. Deep feature learning with relative distance comparison for person re-identification. Pattern Recogn. 48, 10 (2015), 2993--3003.
[70]
Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. 2011. Smartphone usage in the wild: A large-scale analysis of applications and context. In Proceedings of the 13th International Conference on Multimodal Interfaces. ACM, 353--360.
[71]
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. 2013. Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531 (2013). http://arxiv.org/abs/1310.1531.
[72]
Charalampos Doukas, Thomas Pliakas, and Ilias Maglogiannis. 2010. Mobile healthcare information management utilizing cloud computing and android OS. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology. IEEE, 1037--1040.
[73]
Ahmed Eldawy and Mohamed F. Mokbel. 2015. SpatialHadoop: A MapReduce framework for spatial data. In Proceedings of the IEEE 31st International Conference on Data Engineering. IEEE, 1352--1363.
[74]
StatisticBrain. 2016. Facebook statistics. Retrieved April 7, 2016 from http://www.statisticbrain.com/facebook-statistics/.
[75]
Facebook.Com. 2016. Facebook. Retrieved May 20, 2016 from https://www.facebook.com/.
[76]
Jianqing Fan, Fang Han, and Han Liu. 2014. Challenges of big data analysis. Natl. Sci. Rev. 1, 2 (2014), 293--314.
[77]
Ruogu Fang, Samira Pouyanfar, Yimin Yang, Shu-Ching Chen, and SS Iyengar. 2016. Computational health informatics in the big data age: A survey. ACM Comput. Surv. 49, 1 (2016), 12.
[78]
Fausto Fleites, Haohong Wang, and Shu-Ching Chen. 2015a. TV shopping via multi-cue product detection. IEEE Trans. Emerg. Top. Comput. 3, 2 (2015), 161--171.
[79]
Fausto C. Fleites and Shu-Ching Chen. 2013. Efficient content-based multimedia retrieval using novel indexing structure in PostgreSQL. In Proceedings of the IEEE International Symposium on Multimedia. IEEE, 500--501.
[80]
Fausto C. Fleites, Shu-Ching Chen, and Kasturi Chatterjee. 2011. AH+-tree: An efficient multimedia indexing structure for similarity queries. In Proceedings of the IEEE International Symposium on Multimedia. IEEE, 69--76.
[81]
Fausto C. Fleites, Shu-Ching Chen, and Kasturi Chatterjee. 2012. A semantic index structure for multimedia retrieval. Int. J. Semantic Comput. 6, 2 (2012), 155--178.
[82]
Fausto C. Fleites, Hsin-Yu Ha, Yimin Yang, and Shu-Ching Chen. 2014. Large-scale correlation-based semantic classification using MapReduce. In Cloud Computing and Digital Media: Fundamentals, Techniques, and Applications. Chapman and Hall/CRC, 169--190.
[83]
Fausto C. Fleites, Haohong Wang, and Shu-Ching Chen. 2015b. Enabling enriched TV shopping experience via computational and temporal aware view-centric multimedia abstraction. IEEE Trans. Multimedia 17, 7 (2015), 1068--1080.
[84]
Flickr.Com. 2016. Flickr. Retrieved May 20, 2016 from https://www.flickr.com/.
[85]
Foursquare.Com. 2016. Foursquare statistics. Retrieved April 8, 2016 from https://foursquare.com/about.
[86]
Borivoje Furht and Armando Escalante. 2010. Handbook of Cloud Computing. Vol. 3. Springer.
[87]
Amir Gandomi and Murtaza Haider. 2015. Beyond the hype: Big data concepts, methods, and analytics. Int. J. Inf. Manage. 35, 2 (2015), 137--144.
[88]
Abdullah Gani, Aisha Siddiqa, Shahaboddin Shamshirband, and Fariza Hanum. 2016. A survey on indexing techniques for big data: Taxonomy and performance evaluation. Knowl. Inf. Syst. 46, 2 (2016), 241--284.
[89]
Lianli Gao, Jingkuan Song, Xingyi Liu, Junming Shao, Jiajun Liu, and Jie Shao. 2017. Learning in high-dimensional multimedia data: The state of the art. Multimedia Syst. 23, 3 (2017), 303--313.
[90]
Salvador García, Julián Luengo, and Francisco Herrera. 2015. Data Preprocessing in Data Mining. Vol. 72. Springer.
[91]
IGSR. 2016. IGSR and the 1000 Genomes Project. Retrieved December 21, 2017 from http://www.internationalgenome.org.
[92]
Ivan Giangreco, Ihab Al Kabary, and Heiko Schuldt. 2014. ADAM-A database and information retrieval system for big multimedia collections. In Proceedings of the IEEE International Congress on Big Data. IEEE, 406--413.
[93]
Tim Gollub, Michael Volske, Matthias Hagen, and Bernardo Stein. 2014. Dynamic taxonomy composition via keyqueries. In Proceedings of the IEEE/ACM Joint Conference on Digital Libraries. IEEE, 39--48.
[94]
Yihong Gong and Wei Xu. 2007. Machine Learning for Multimedia Content Analysis. Vol. 30. Springer Science 8 Business Media.
[95]
Google.Com. 2016. Google statistics. Retrieved April 8, 2016 from https://www.google.com/.
[96]
Kehua Guo, Wei Pan, Mingming Lu, Xiaoke Zhou, and Jianhua Ma. 2015. An effective and economical architecture for semantic-based heterogeneous multimedia big data retrieval. J. Syst. Softw. 102 (2015), 207--216.
[97]
Ralf Hartmut Güting and Markus Schneider. 2005. Moving Objects Databases. Morgan Kaufmann.
[98]
Hsin-Yu Ha, Shu-Ching Chen, and Mei-Ling Shyu. 2015. Negative-based sampling for multimedia retrieval. In Proceedings of the IEEE International Conference on Information Reuse and Integration. IEEE, 64--71.
[99]
Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA data mining software: An update. ACM SIGKDD Explor. Newslett. 11, 1 (2009), 10--18.
[100]
Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques. Morgan Kaufmann.
[101]
Ibrahim Abaker Targio Hashem, Victor Chang, Nor Badrul Anuar, Kayode Adewole, Ibrar Yaqoob, Abdullah Gani, Ejaz Ahmed, and Haruna Chiroma. 2016. The role of big data in smart city. Int. J. Inf. Manage. 36, 5 (2016), 748--758.
[102]
Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Nor Badrul Anuar, Salimah Mokhtar, Abdullah Gani, and Samee Ullah Khan. 2015. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 47 (2015), 98--115.
[103]
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 770--778.
[104]
Joseph M. Hellerstein, Jeffrey F. Naughton, and Avi Pfeffer. 1995. Generalized search trees for database systems. In Proceedings of the 21th International Conference on Very Large Data Bases. Morgan Kaufmann, Zurich, Switzerland, 562--573.
[105]
Scott Hendrickson. 2010. Getting started with Hadoop with Amazon’s elastic MapReduce. Retrieved April 7, 2016 from https://www.slideshare.net/DrSkippy27/amazon-elastic-map-reduce-getting-started-with-hadoop.
[106]
Li-Yung Ho, Jan-Jan Wu, and Pangfeng Liu. 2012. Distributed graph database for large-scale social computing. In Proceedings of the IEEE 5th International Conference on Cloud Computing. IEEE Computer Society, 455--462.
[107]
Steven C. H. Hoi, Jialei Wang, Peilin Zhao, and Rong Jin. 2012. Online feature selection for mining big data. In Proceedings of the 1st International Workshop on Big Data, Streams and Heterogeneous Source Mining: Algorithms, Systems, Programming Models and Applications. ACM, 93--100.
[108]
Han Hu, Yonggang Wen, Tat-Seng Chua, and Xuelong Li. 2014. Toward scalable systems for big data analytics: A technology tutorial. IEEE Access 2 (2014), 652--687.
[109]
Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. 2011. A survey on visual content-based video indexing and retrieval. IEEE Trans. Syst. Man Cybernet. C 41, 6 (2011), 797--819.
[110]
Tiejun Huang. 2014. Surveillance video: The biggest big data. Comput. Now 7, 2 (2014), 82--91.
[111]
iCloud.Com. 2016. iCloud. Retrieved May 20, 2016 from https://www.icloud.com/.
[112]
Image-net.Org. 2016. ImageNet. Retrieved April 18, 2016 from http://image-net.org/about-stats.
[113]
Instagram.Com. 2016. Instagram. Retrieved May 20, 2016 from https://www.instagram.com/?hl=en.
[114]
Fatima EL Jamiy, Abderrahmane Daif, Mohamed Azouazi, and Abdelaziz Marzak. 2015. The potential and challenges of big data-Recommendation systems next level application. CoRR abs/1501.03424 (2015). http://arxiv.org/abs/1501.03424.
[115]
Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the ACM International Conference on Multimedia. 675--678.
[116]
Samira Ebrahimi Kahou, Xavier Bouthillier, Pascal Lamblin, Çaglar Gülçehre, Vincent Michalski, Kishore Konda, Sébastien Jean, Pierre Froumenty, Yann Dauphin, Nicolas Boulanger-Lewandowski, Raul Chandias Ferrari, Mehdi Mirza, David Warde-Farley, Aaron C. Courville, Pascal Vincent, Roland Memisevic, Christopher Joseph Pal, and Yoshua Bengio. 2016. EmoNets: Multimodal deep learning approaches for emotion recognition in video. J. Multimodal User Interfaces 10, 2 (2016), 99--111.
[117]
U. Kang, Duen Horng Chau, and Christos Faloutsos. 2012. Pegasus: Mining billion-scale graphs in the cloud. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 5341--5344.
[118]
Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. 2014. Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, 1725--1732.
[119]
Amreen Khan and KamalKant Ahirwar. 2011. Mobile cloud computing as a future of mobile multimedia database. Int. J. Comput. Sci. Commun. 2, 1 (2011), 219--221.
[120]
Nawsher Khan, Ibrar Yaqoob, Ibrahim Abaker Targio Hashem, Zakira Inayat, Waleed Kamaleldin Mahmoud Ali, Muhammad Alam, Muhammad Shiraz, and Abdullah Gani. 2014. Big data: Survey, technologies, opportunities, and challenges. Sci. World J. 2014 (2014), 18.
[121]
KNIME.Org. 2016. KNIME. Retrieved May 7, 2016 from https://www.knime.org/.
[122]
Ioannis Kompatsiaris, Sotiris Diplaris, and Symeon Papadopoulos. 2014. Social data and multimedia analytics for news and events applications. In Proceedings of the International Conference on Database Theory Workshops Jointly with Extending Database Technology. CEUR-WS, 280--281.
[123]
Robert Kosara and Jock Mackinlay. 2013. Storytelling: The next step for visualization. IEEE Comput. 46, 5 (2013), 44--50.
[124]
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems. Curran Associates, Inc., 1097--1105.
[125]
Alexandros Labrinidis and H. V. Jagadish. 2012. Challenges and opportunities with big data. Proc. VLDB Endow. 5, 12 (2012), 2032--2033.
[126]
Griffin Lacey, Graham W. Taylor, and Shawki Areibi. 2016. Deep learning on FPGAs: Past, present, and future. CoRR abs/1602.04283 (2016). http://arxiv.org/abs/1602.04283.
[127]
Sara Landset, Taghi M. Khoshgoftaar, Aaron N. Richter, and Tawfiq Hasanin. 2015. A survey of open source tools for machine learning with big data in the Hadoop ecosystem. J. Big Data 2, 1 (2015), 1--36.
[128]
Nicholas D. Lane, Emiliano Miluzzo, Hong Lu, Daniel Peebles, Tanzeem Choudhury, and Andrew T. Campbell. 2010. A survey of mobile phone sensing. IEEE Commun. Mag. 48, 9 (2010), 140--150.
[129]
Juha K. Laurila, Daniel Gatica-Perez, Imad Aad, Olivier Bornet, Trinh-Minh-Tri Do, Olivier Dousse, Julien Eberle, Markus Miettinen, and others. 2012. The mobile data challenge: Big data for mobile computing research. In Proceedings of the Workshop on the Nokia Mobile Data Challenge in Conjunction with the 10th International Conference on Pervasive Computing. 1--8.
[130]
Quoc V. Le. 2013. Building high-level features using large scale unsupervised learning. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. 8595--8598.
[131]
LEADTOOLS. 2016. Multimedia Capture SDK Technology. Retrieved April 26, 2016 from https://www.leadtools.com/sdk/multimedia/capture.
[132]
Taesung Lee, Jin-woo Park, Sanghoon Lee, Seung-won Hwang, Sameh Elnikety, and Yuxiong He. 2015. Processing and optimizing main memory spatial-keyword queries. Proc. VLDB Endow. 9, 3 (2015), 132--143.
[133]
Lin Lin, Guy Ravitz, Mei-Ling Shyu, and Shu-Ching Chen. 2008. Effective feature space reduction with imbalanced data for semantic concept detection. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous, and Trustworthy Computing. 262--269.
[134]
Dianting Liu, Yilin Yan, Mei-Ling Shyu, Guiru Zhao, and Min Chen. 2015. Spatio-temporal analysis for human action detection and recognition in uncontrolled environments. Int. J. Multimedia Data Eng. Manage. 6, 1 (2015), 1--18.
[135]
Philipos C. Loizou. 2013. Speech Enhancement: Theory and Practice. CRC Press, Boca Raton, FL.
[136]
Yucheng Low, Joseph E. Gonzalez, Aapo Kyrola, Danny Bickson, Carlos E. Guestrin, and Joseph Hellerstein. 2014. Graphlab: A new framework for parallel machine learning. CoRR abs/1408.2041 (2014). http://arxiv.org/abs/1408.2041.
[137]
Zhe-Ming Lu and Yong Shi. 2013. Fast video shot boundary detection based on SVD and pattern matching. IEEE Trans. Image Process. 22, 12 (2013), 5136--5145.
[138]
Jian Luo. 2017. Multimedia big data frame combination storage strategy based on virtual space distortion. Int. J. Online Eng. 13, 2 (2017), 119--130.
[139]
Hao Ma, Dengyong Zhou, Chao Liu, Michael R. Lyu, and Irwin King. 2011. Recommender systems with social regularization. In Procedings of the 5th ACM International Conference on Web Search and Data Mining. AC, 287--296.
[140]
Kaleem Razzaq Malik, Tauqir Ahmad, Muhammad Farhan, Muhammad Aslam, Sohail Jabbar, Shehzad Khalid, and Mucheol Kim. 2016. Big-data: Transformation from heterogeneous data to semantically-enriched simplified data. Multimedia Tools Appl. 75, 20 (2016), 12727--12747.
[141]
James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh, and Angela H. Byers. 2011. Big Data: The Next Frontier for Innovation, Competition, and Productivity. Technical Report. McKinsey Global Institute.
[142]
Jonathan Masci, Ueli Meier, Dan Cireşan, and Jürgen Schmidhuber. 2011. Stacked convolutional auto-encoders for hierarchical feature extraction. In Artificial Neural Networks and Machine Learning. Springer, 52--59.
[143]
Ayaka Matsui, Satoshi Nishimura, and Seiichiro Katsura. 2014. A classification method of motion database using hidden Markov model. In Proceedings of the 23rd International Symposium on Industrial Electronics. IEEE, 2232--2237.
[144]
Lucas Mearian. 2012. By 2020, there will be 5,200 GB of data for every person on the Earth. Retreived April 5, 2016 from http://www.computerworld.com/article/2493701/data-center/by-2020-there-will-be-5-200-gb-of-data-for-every-person-on-earth.html.
[145]
MediaEval. 2015. MediaEval 2015 - Multimedia Benchmark Workshop. Retrieved April 18, 2016 from http://ceur-ws.org/Vol-1436/.
[146]
David Mera, Michal Batko, and Pavel Zezula. 2017. Speeding up the multimedia feature extraction: A comparative study on the big data approach. Multimedia Tools Appl. 76, 5 (2017), 7497--7517.
[147]
Katina Michael and Roger Clarke. 2013. Location and tracking of mobile devices: Überveillance stalks the streets. Comput. Law Secur. Rev. 29, 3 (2013), 216--228.
[148]
Katina Michael and Keith Miller. 2013. Big data: New opportunities and new challenges [guest editors’ introduction]. Computer 46, 6 (2013), 22--24.
[149]
MLlib. 2016. Machine Learning Library. Retrieved May 7, 2016 from http://spark.apache.org/docs/latest/mllib-guide.html.
[150]
MongoDB.Com. 2016. MongoDB. Retrieved November 16, 2016 from https://www.mongodb.com/.
[151]
Julián Moreno-Schneider, Paloma Martínez, and José L. Martínez-Fernández. 2017. Combining heterogeneous sources in an interactive multimedia content retrieval model. Exp. Syst. Appl. 69 (2017), 201--213.
[152]
Neo4j.Com. 2016. Neo4j. Retrieved October 16, 2016 from https://neo4j.com/.
[153]
Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y. Ng. 2011. Multimodal deep learning. In Proceedings of the 28th International Conference on Machine Learning. 689--696.
[154]
Oracle 2015. Digital video archiving: The evolving reality of any content, anywhere, anytime. Retrieved April 26, 2016 from http://www.oracle.com/us/products/digital-video-archiving-wp-2549967.pdf.
[155]
Amalia Panteli, Chrisa Tsinaraki, Lemonia Ragia, Fotis Kazasis, and Stavros Christodoulakis. 2011. MObile multimedia event capturing and visualization (MOME). In Proceedings of the 5th FTRA International Conference on Multimedia and Ubiquitous Engineering. 101--106.
[156]
James Philbin, Ondřej Chum, Michael Isard, Josef Sivic, and Andrew Zisserman. 2007. Object retrieval with large vocabularies and fast spatial matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1--8.
[157]
Samira Pouyanfar and Shu-Ching Chen. 2016. Semantic event detection using ensemble deep learning. In Proceedings of the IEEE International Symposium on MultimediaI. IEEE, 203--208.
[158]
Samira Pouyanfar and Shu-Ching Chen. 2017. Automatic video event detection for imbalance data using enhanced ensemble deep learning. Int. J. Semant. Comput. 11, 01 (2017), 85--109.
[159]
Zoltán Prekopcsák, Gabor Makrai, Tamas Henk, and Csaba Gaspar-Papanek. 2011. Radoop: Analyzing big data with Rapidminer and Hadoop. In Proceedings of the 2nd RapidMiner Community Meeting and Conference. Citeseer, 865--874.
[160]
Enislay Ramentol, Yailé Caballero, Rafael Bello, and Francisco Herrera. 2012. SMOTE-RSB*: A hybrid preprocessing approach based on oversampling and undersampling for high imbalanced data-sets using SMOTE and rough sets theory. Knowl. Inf. Syst. 33, 2 (2012), 245--265.
[161]
RapidMiner.Com. 2016. RapidMiner. Retrieved May 7, 2016 from https://rapidminer.com/.
[162]
Priyanka Rawat, Kamal Deep Singh, Hakima Chaouchi, and Jean Marie Bonnin. 2014. Wireless sensor networks: A survey on recent developments and potential synergies. J. Supercomput. 68, 1 (2014), 1--48.
[163]
Daniel A. Reed, Dennis B. Gannon, and James R. Larus. 2012. Imagining the future: Thoughts on computing. IEEE Comput. 45, 1 (2012), 25--30.
[164]
Nathan Regola, David A. Cieslak, and Nitesh V. Chawla. 2014. The need to consider hardware selection when designing big data applications supported by metadata. In Big Data Management, Technologies, and Applications. IGI Global, 381--396.
[165]
Francesco Ricci. 2010. Mobile recommender systems. Inf. Technol. Tour. 12, 3 (2010), 205--231.
[166]
Petar Ristoski and Heiko Paulheim. 2014. Feature selection in hierarchical feature spaces. In Discovery Science. Springer, 288--300.
[167]
Daniel A. Rodríguez-Silva, Lilian Adkinson-Orellana, F. J. Gonz’lez-Castano, I. Armino-Franco, and D. Gonz’lez-Martinez. 2012. Video surveillance based on cloud storage. In Proceedings of the IEEE 5th International Conference on Cloud Computing. IEEE, 991--992.
[168]
Noha A. Sakr, Ali I. ELdesouky, and Hesham Arafat. 2016. An efficient fast-response content-based image retrieval framework for big data. Comput. Electr. Eng. 54 (2016), 522--538.
[169]
Salam Sakr, An Liu, Daniel M. Batista, and Mohammad Alomari. 2011. A survey of large scale data management approaches in cloud environments. Commun. Surv. Tutor. 13, 3 (2011), 311--336.
[170]
Neil J. Salkind. 2006. Encyclopedia of Measurement and Statistics. Vol. 1. Sage, Thousand Oaks, CA.
[171]
Arjmand Samuel, Muhammad I. Sarfraz, Hammad Haseeb, Saleh Basalamah, and Arif Ghafoor. 2015. A framework for composition and enforcement of privacy-aware and context-driven authorization mechanism for multimedia big data. IEEE Trans. Multimedia 17, 9 (2015), 1484--1494.
[172]
Eric E. Schadt, Michael D. Linderman, Jon Sorenson, Lawrence Lee, and Garry P. Nolan. 2010. Computational solutions to large-scale data management and analysis. Nat. Rev. Genet. 11, 9 (2010), 647--657.
[173]
Gerald Schuller, Matthias Gruhne, and Tanja Friedrich. 2011. Fast audio feature extraction from compressed audio data. IEEE J. Select. Top. Sign. Process. 5, 6 (2011), 1262--1271.
[174]
Andrei Seres. 2010. Three database management systems (DBMS) compared. Open Source Sci. J. 2, 4 (2010), 65--82.
[175]
Mei-Ling Shyu, Shu-Ching Chen, Qibin Sun, and Heather Yu. 2007. Overview and future trends of multimedia research for content access and distribution. Int. J. Semant. Comput. 1, 01 (2007), 29--66.
[176]
Mei-Ling Shyu, Zongxing Xie, Min Chen, and Shu-Ching Chen. 2008. Video semantic event/concept detection using a subspace-based multimedia data mining framework. IEEE Trans. Multimedia 10, 2 (2008), 252--259.
[177]
Aisha Siddiqa, Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Mohsen Marjani, Shahabuddin Shamshirband, Abdullah Gani, and Fariza Nasaruddin. 2016. A survey of big data management: Taxonomy and state-of-the-art. J. Netw. Comput. Appl. 71 (2016), 151--166.
[178]
Sam B. Siewert. 2013. Big data in the cloud - Data velocity, volume, variety and veracity. https://www.ibm.com/developerworks/library/bd-bigdatacloud/index.html.
[179]
John R. Smith. 2013. Riding the multimedia big data wave. In Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, Dublin, Ireland, 1--2.
[180]
Thurston Smith. 2015. Social media and big data statistics. Retreived April 5, 2015 from https://www.youtube.com/watch?v=hoZ7YhfRchw.
[181]
Houbing Song, Pablo Basanta-Val, Anthony Steed, Minho Jo, and others. 2017. Next-generation big data analytics: State of the art, challenges, and future research topics. IEEE Trans. Industr. Inf. 13, 4 (2017), 1891--1899.
[182]
Jingkuan Song, Yang Yang, Yi Yang, Zi Huang, and Heng Tao Shen. 2013. Inter-media hashing for large-scale retrieval from heterogeneous data sources. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data. 785--796.
[183]
Statista.Com. 2015. Statistics and facts about Big Data. Retrieved April 5, 2016 from http://www.statista.com/topics/1464/big-data/.
[184]
Statisticbrain.Com. 2016. Twitter statistics. Retrieved April 8, 2016 from http://www.statisticbrain.com/twitter-statistics/.
[185]
Eliza Strickland. 2013. The gene machine and me. IEEE Spectr. 50, 3 (2013), 30--59.
[186]
Subashini Subashini and Veeraruna Kavitha. 2011. A survey on security issues in service delivery models of cloud computing. J. Netw. Comput. Appl. 34, 1 (2011), 1--11.
[187]
Sreenivas R. Sukumar, Ramachandran Natarajan, and Regina K. Ferrell. 2015. Quality of big data in health care. Int. J. Health Care Qual. Assur. 28, 6 (2015), 621--634.
[188]
Cees H. Taal, Richard C. Hendriks, and Richard Heusdens. 2012. A speech preprocessing strategy for intelligibility improvement in noise based on a perceptual distortion measure. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 4061--4064.
[189]
Mingkui Tan, Ivor W. Tsang, and Li Wang. 2014. Towards ultrahigh dimensional feature selection for big data. J. Mach. Learn. Res. 15, 1 (2014), 1371--1429.
[190]
Weimin Tan, Bo Yan, Ke Li, and Qi Tian. 2016. Image retargeting for preserving robust local feature: Application to mobile visual search. IEEE Trans. Multimedia 18, 1 (2016), 128--137.
[191]
R Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
[192]
Bart Thomee, David A. Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas Poland, Damian Borth, and Li-Jia Li. 2016. YFCC100M: The new data in multimedia research. Commun. ACM 59, 2 (2016), 64--73.
[193]
Yonghong Tian, Shu-Ching Chen, Mei-Ling Shyu, Tiejun Huang, Phillip Sheu, and Alberto Del Bimbo. 2015. Multimedia big data. IEEE MultiMedia 22, 3 (2015), 93--95.
[194]
Tiny. 2016. Tiny images dataset. Retreived April 18, 2016 from http://horatio.cs.nyu.edu/mit/tiny/data/index.html.
[195]
Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, and others. 2014. Storm@ twitter. In Proceedings of the ACM SIGMOD International Conference on Management of Data. 147--156.
[196]
Nicolas Touchard and Jean-Marie Vau. 2004. Method for sharing multimedia data. (2004). US Patent App. 10/550,115.
[197]
Trecvid. 2016. Trecvid 2016-AVS. Retreived April 18, 2016 from http://www-nlpir.nist.gov/projects/tv2016/tv2016.html#avs.
[198]
Chun-Wei Tsai, Chin-Feng Lai, Han-Chieh Chao, and Athanasios V. Vasilakos. 2015. Big data analytics: A survey. J. Big Data 2, 1 (2015), 1--32.
[199]
Zeynep Tufekci. 2014. Big questions for social media big data: Representativeness, validity and other methodological pitfalls. In Proceedings of the Eighth International Conference on Weblogs and Social Media. Michigan, USA, 505--514.
[200]
Twitter.Com. 2016. Twitter. Retrieved May 20, 2016 from https://twitter.com/?lang=en.
[201]
Alper Kursat Uysal and Serkan Gunal. 2014. The impact of preprocessing on text classification. Inf. Process. Manage. 50, 1 (2014), 104--112.
[202]
Stef Van Buuren. 2012. Flexible Imputation of Missing Data. CRC Press, Boca Raton, FL.
[203]
Fritz Venter and Andrew Stein. 2012. Images 8 videos: Really big data. Analytics Magazine (2012), 14--47.
[204]
Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney, Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In Proceedings of the IEEE International Conference on Computer Vision. 4534--4542.
[205]
Pushpendra Verma, Jayant Shekhar, Amit Asthana, and others. 2016. Digital right management model based on cryptography for mobile multimedia content. Int. J. Adv. Res. Comput. Sci. 7, 2 (2016).
[206]
Javier Vidal-García, Marta Vidal, and Rafael Hernandez Barros. 2017. Computational business intelligence, big data, and their role in business decisions in the age of the internet of things. In The Internet of Things in the Modern Business Environment. IGI Global, 249--268.
[207]
VW. 2016. Vowpal Wabbit. Retrieved May 7, 2016 from http://hunch.net/∼vw/.
[208]
Kun Wang, Yunqi Wang, Xiaoxuan Hu, Yanfei Sun, Der-Jiunn Deng, Alexey Vinel, and Yan Zhang. 2017. Wireless big data computing in smart grid. IEEE Wireless Commun. 24, 2 (2017), 58--64.
[209]
Lijun Wang, Yu Lei, Ying Zeng, Li Tong, and Bin Yan. 2013. Principal feature analysis: A multivariate feature selection method for fMRI data. Computat. Math. Methods Med. 2013, 645921 (2013), 1--7.
[210]
Yong Wang, Kevin Streff, and Sonell Raman. 2012. Smartphone security challenges. Computer 45, 12 (2012), 0052--58.
[211]
Yang Wang, Xinggang Wang, and Wenyu Liu. 2016. Unsupervised local deep feature for image recognition. Inf. Sci. 351 (2016), 67--75.
[212]
Robert E. Wilson, Samuel D. Gosling, and Lindsay T. Graham. 2012. A review of Facebook research in the social sciences. Perspect. Psychol. Sci. 7, 3 (2012), 203--220.
[213]
Worldometers. 2016. Real time world statistics. Retrieved April 7, 2016 from http://www.worldometers.info/world-population/.
[214]
Jiajun Wu, Yinan Yu, Chang Huang, and Kai Yu. 2015. Deep multiple instance learning for image classification and auto-annotation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 3460--3469.
[215]
Xindong Wu and Xingquan Zhu. 2008. Mining with noise knowledge: Error-aware data mining. IEEE Trans. Syst. Man Cybernet. A 38, 4 (2008), 917--932.
[216]
Hongbo Xu, Nianmin Yao, Wen Hu, Haiwei Pan, and Xiang Gao. 2012. The design and implementation of image information retrieval. In Proceedings of the International Conference on Computer Science 8 Service System. 1547--1550.
[217]
Zheng Xu, Yunhuai Liu, Lin Mei, Chuanping Hu, and Lan Chen. 2015. Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102 (2015), 217--225.
[218]
Yilin Yan, Min Chen, Saad Sadiq, and Mei-Ling Shyu. 2017. Efficient imbalanced multimedia concept retrieval by deep learning on spark clusters. International Journal of Multimedia Data Engineering and Management 8, 1 (2017), 1--20.
[219]
Yilin Yan, Mei-Ling Shyu, and Qiusha Zhu. 2016a. Negative correlation discovery for big multimedia data semantic concept mining and retrieval. In Proceedings of the IEEE 10th International Conference on Semantic Computing. 55--62.
[220]
Yilin Yan, Qiusha Zhu, Mei-Ling Shyu, and Shu-Ching Chen. 2016b. A classifier ensemble framework for multimedia big data classification. In Proceedings of the 17th IEEE International Conference on Information Reuse and Integration. IEEE Computer Society, 615--622.
[221]
Chaowei Yang, Qunying Huang, Zhenlong Li, Kai Liu, and Fei Hu. 2017. Big data and cloud computing: Innovation opportunities and challenges. Int. J. Digit. Earth 10, 1 (2017), 13--53.
[222]
Yimin Yang. 2015. Exploring Hidden Coherent Feature Groups and Temporal Semantics for Multimedia Big Data Analysis. Ph.D. Dissertation. Florida International University.
[223]
Yimin Yang, Hsin-Yu Ha, Fausto Fleites, Shu-Ching Chen, and Steven Luis. 2011. Hierarchical disaster image classification for situation report enhancement. In Proceedings of the IEEE International Conference on Information Reuse and Integration. 181--186.
[224]
Yimin Yang, Daniel Lopez, Haiman Tian, Samira Pouyanfar, Fausto C. Fleites, Shu-Ching Chen, and Shahid Hamid. 2015. Integrated execution framework for catastrophe modeling. In Proceedings of the IEEE International Conference on Semantic Computing. IEEE, 201--207.
[225]
Yimin Yang, Wenting Lu, Jesse Domack, Tao Li, Shu-Ching Chen, Steve Luis, and Jainendra K. Navlakha. 2012. Madis: A multimedia-aided disaster information integration system for emergency management. In Proceedings of the 8th International Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom). ICST/IEEE, 233--241.
[226]
Shanshan Yao, Yunsheng Wang, and Baoning Niu. 2015. An efficient cascaded filtering retrieval method for big audio data. IEEE Trans. Multimedia 17, 9 (2015), 1450--1459.
[227]
Zhan Ye, Ahmad P. Tafti, Karen Y. He, Kai Wang, and Max M. He. 2016. SparkText: Biomedical text mining on big data framework. PloS One 11, 9 (2016), e0162721.
[228]
YouTube.Com. 2016. YouTube statistics. Retreived April 7, 2016 from https://www.youtube.com/yt/press/statistics.html.
[229]
Zhiwen Yu, Xingshe Zhou, Daqing Zhang, Chung-Yau Chin, Xiaohang Wang, and Ji Men. 2006. Supporting context-aware media recommendations for smart phones. IEEE Perv. Comput. 5, 3 (2006), 68--75.
[230]
John Zachary, S. Sitharama Iyengar, and Jacob Barhen. 2001. Content based image retrieval and information theory: A general approach. J. Am. Soc. Inf. Sci. Technol. 52, 10 (2001), 840--852.
[231]
Reza Zafarani, Mohammad Ali Abbasi, and Huan Liu. 2014. Social Media Mining: An Introduction. Cambridge University Press.
[232]
Arkady Zaslavsky, Charith Perera, and Dimitrios Georgakopoulos. 2013. Sensing as a service and big data. CoRR abs/1301.0159 (2013). http://arxiv.org/abs/1301.0159.
[233]
Xingyu Zeng, Wanli Ouyang, Meng Wang, and Xiaogang Wang. 2014. Deep learning of scene-specific classifier for pedestrian detection. In Proceedings of the 13th European Conference on Computer Vision. Springer, Zurich, 472--487.
[234]
Chengcui Zhang, Shu-Ching Chen, Mei-Ling Shyu, and Srinivas Peeta. 2003. Adaptive background learning for vehicle detection and spatio-temporal tracking. In Proceedings of the 4th IEEE Pacific-Rim Conference on Multimedia. IEEE.
[235]
Jian Zhang, Shifei Ding, Nan Zhang, and Zhongzhi Shi. 2016. Incremental extreme learning machine based on deep feature embedded. Int. J. Mach. Learn. Cybernet. 7, 1 (2016), 111--120.
[236]
Xishan Zhang, Yang Yang, Yongdong Zhang, Huanbo Luan, Jintao Li, Hanwang Zhang, and Tat-Seng Chua. 2015. Enhancing video event recognition using automatically constructed semantic-visual knowledge base. IEEE Trans. Multimedia 17, 9 (2015), 1562--1575.
[237]
Liang Zhou and Han-Chieh Chao. 2011. Multimedia traffic security architecture for the internet of things. IEEE Netw. 25, 3 (2011), 35--40.
[238]
Qiusha Zhu, Zhao Li, Haohong Wang, Yimin Yang, and Mei-Ling Shyu. 2013. Multimodal sparse linear integration for content-based item recommendation. In Proceedings of the IEEE International Symposium on Multimedia. IEEE Computer Society, Los Alamitos, CA, 187--194.
[239]
Xingquan Zhu and Xindong Wu. 2005. Cost-constrained data acquisition for intelligent data preparation. IEEE Trans. Knowl. Data Eng. 17, 11 (2005), 1542--1556.
[240]
Paul Zikopoulos, Krishnan Parasuraman, Thomas Deutsch, James Giles, David Corrigan, and others. 2012. Harness the Power of Big Data The IBM Big Data Platform. McGraw-Hill Professional, New York, NY.

Cited By

View all
  • (2024)Improvement of Inventory Management and Demand Forecasting by Big Data Analytics in Supply ChainApplied Mathematics and Nonlinear Sciences10.2478/amns-2024-22139:1Online publication date: 5-Aug-2024
  • (2024)Blockchain for Big Data: Approaches, Opportunities and Future DirectionsRecent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)10.2174/235209651666623060710453717:3(229-243)Online publication date: Mar-2024
  • (2024)PT-HMC: Optimization-based Pre-Training with Hamiltonian Monte-Carlo Sampling for Driver Intention RecognitionACM Transactions on Probabilistic Machine Learning10.1145/36885731:1(1-25)Online publication date: 13-Aug-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 51, Issue 1
January 2019
743 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3177787
  • Editor:
  • Sartaj Sahni
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 January 2018
Accepted: 01 October 2017
Revised: 01 June 2017
Received: 01 May 2016
Published in CSUR Volume 51, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 5V challenges
  2. Big data analytics
  3. data mining
  4. indexing
  5. machine learning
  6. mobile multimedia
  7. multimedia analysis
  8. multimedia databases
  9. retrieval
  10. survey

Qualifiers

  • Survey
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)153
  • Downloads (Last 6 weeks)12
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Improvement of Inventory Management and Demand Forecasting by Big Data Analytics in Supply ChainApplied Mathematics and Nonlinear Sciences10.2478/amns-2024-22139:1Online publication date: 5-Aug-2024
  • (2024)Blockchain for Big Data: Approaches, Opportunities and Future DirectionsRecent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)10.2174/235209651666623060710453717:3(229-243)Online publication date: Mar-2024
  • (2024)PT-HMC: Optimization-based Pre-Training with Hamiltonian Monte-Carlo Sampling for Driver Intention RecognitionACM Transactions on Probabilistic Machine Learning10.1145/36885731:1(1-25)Online publication date: 13-Aug-2024
  • (2024)Enabling Social Robots to Perceive and Join Socially Interacting Groups Using F-formation: A Comprehensive OverviewACM Transactions on Human-Robot Interaction10.1145/368207213:4(1-48)Online publication date: 23-Oct-2024
  • (2024)HKPoly: A Polystore Architecture to Support Data Linkage and Queries on Distributed and Heterogeneous DataProceedings of the 20th Brazilian Symposium on Information Systems10.1145/3658271.3658322(1-10)Online publication date: 20-May-2024
  • (2024)Try with Simpler – An Evaluation of Improved Principal Component Analysis in Log-based Anomaly DetectionACM Transactions on Software Engineering and Methodology10.1145/3644386Online publication date: 7-Feb-2024
  • (2024)Applying Blockchain Technology into Big Data: Advantages and ChallengesProcedia Computer Science10.1016/j.procs.2024.05.171237(827-832)Online publication date: 2024
  • (2024)Role of IoT technologies in big data management systems: A review and Smart Grid case studyPervasive and Mobile Computing10.1016/j.pmcj.2024.101905(101905)Online publication date: Feb-2024
  • (2024)Critical Success Factors for Emerging Technology Adoption, Strategic Flexibility, and Competitiveness: An Evidence-Based Total Interpretive Structural Modeling Approach (TISM-E)Global Journal of Flexible Systems Management10.1007/s40171-024-00408-w25:3(601-628)Online publication date: 26-Jun-2024
  • (2024)End-to-end pseudo relevance feedback based vertical web search queries recommendationMultimedia Tools and Applications10.1007/s11042-024-18559-4Online publication date: 21-Feb-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media