DIVAN: Deep-Interest Virality-Aware Network to Exploit Temporal Dynamics in News Recommendation
Abstract
References
Index Terms
- DIVAN: Deep-Interest Virality-Aware Network to Exploit Temporal Dynamics in News Recommendation
Recommendations
News Session-Based Recommendations using Deep Neural Networks
DLRS 2018: Proceedings of the 3rd Workshop on Deep Learning for Recommender SystemsNews recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, ...
Modeling and broadening temporal user interest in personalized news recommendation
An experimental study on user interest evolution in real-world recommender systems.Integrating the long-term and short-term reading preferences of users.Selecting news from the user-item affinity graph using absorbing random walk model.Extensive ...
A framework for diversifying recommendation lists by user interest expansion
Recommender systems have been widely used to discover users' preferences and recommend interesting items to users during this age of information overload. Researchers in the field of recommender systems have realized that the quality of a top-N ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Acceptance Rates
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 112Total Downloads
- Downloads (Last 12 months)112
- Downloads (Last 6 weeks)60
Other Metrics
Citations
View Options
View options
View or Download as a PDF file.
PDFeReader
View online with eReader.
eReaderHTML Format
View this article in HTML Format.
HTML FormatLogin options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in