[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

A Reproducible Stress Prediction Pipeline with Mobile Sensor Data

Published: 09 September 2024 Publication History

Abstract

Recent efforts to predict stress in the wild using mobile technology have increased; however, the field lacks a common pipeline for assessing the impact of factors such as label encoding and feature selection on prediction performance. This gap hinders replication, especially because of a lack of common guidelines for reporting results or privacy concerns that limit access to open codes and datasets. Our study introduces a common pipeline based on a comprehensive literature review and offers comprehensive evaluations of key pipeline factors, promoting independent reproducibility. Our systematic evaluation aimed to validate the findings of previous studies. We identified overfitting and distribution shifts across users as the major reasons for performance limitations. We used K-EmoPhone, a public dataset, for experimentation and a new public dataset---DeepStress---to validate the findings. Furthermore, our results suggest that researchers should carefully consider temporal order in cross-validation settings. Additionally, self-report labels for target users are key to enhancing performance in user-independent scenarios.

Supplemental Material

PDF File - Supplementary Materials
This is the supplementary material for the paper which describes details of the personalized models and the DeepStress dataset used in the paper.

References

[1]
Saeed Abdullah, Mark Matthews, Elizabeth L. Murnane, Tanzeem Choudhury, and Geri Gay. 2014. Towards Circadian Computing: "Early to Bed and Early to Rise" Makes Some of Us Unhealthy and Sleep Deprived. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '14). ACM, New York, NY, USA, Association for Computing Machinery, New York, NY, USA, 673--684. https://doi.org/10.1145/2632048.2632100
[2]
L. Acharya, L. Jin, and W. Collins. 2018. College life is stressful today-Emerging stressors and depressive symptoms in college students. Journal of American College Health 66, 7 (2018), 655--664. https://doi.org/10.1080/07448481.2018.1451869
[3]
D. A. Adler, F. Wang, D. C. Mohr, and T. Choudhury. 2022. Machine learning for passive mental health symptom prediction: Generalization across different longitudinal mobile sensing studies. PLOS ONE 17, 4 (2022), 1--20. https://doi.org/10.1371/journal.pone.0266516
[4]
Charu C. Aggarwal. 2014. Data Classification: Algorithms and Applications. Chapman and Hall/CRC. https://doi.org/10.1201/b17320
[5]
R. Albertoni, S. Colantonio, P. Skrzypczyński, and J. Stefanowski. 2023. Reproducibility of Machine Learning: Terminology, Recommendations and Open Issues. arXiv preprint arXiv:2302.12691 (2023). https://arxiv.org/abs/2302.12691
[6]
Jumabek Alikhanov, Panyu Zhang, YoungTae Noh, and Hakil Kim. 2023. Design of Contextual Filtered Features for Better Smartphone-User Receptivity Prediction. IEEE Internet of Things Journal (2023). https://doi.org/10.1109/JIOT.2023.3331715
[7]
Karim Assi, Lakmal Meegahapola, William Droz, Peter Kun, Amalia De Götzen, Miriam Bidoglia, Sally Stares, George Gaskell, Altangerel Chagnaa, Amarsanaa Ganbold, Tsolmon Zundui, Carlo Caprini, Daniele Miorandi, José Luis Zarza, Alethia Hume, Luca Cernuzzi, Ivano Bison, Marcelo Dario Rodas Britez, Matteo Busso, Ronald Chenu-Abente, Fausto Giunchiglia, and Daniel Gatica-Perez. 2023. Complex Daily Activities, Country-Level Diversity, and Smartphone Sensing: A Study in Denmark, Italy, Mongolia, Paraguay, and UK. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI '23). Association for Computing Machinery, New York, NY, USA, Article 506, 23 pages. https://doi.org/10.1145/3544548.3581190
[8]
Andrey Bogomolov, Bruno Lepri, Michela Ferron, Fabio Pianesi, and Alex (Sandy) Pentland. 2014. Daily Stress Recognition from Mobile Phone Data, Weather Conditions and Individual Traits. In Proceedings of the 22nd ACM International Conference on Multimedia (Orlando, Florida, USA) (MM '14). Association for Computing Machinery, New York, NY, USA, 477--486. https://doi.org/10.1145/2647868.2654933
[9]
Jordan L. Cahoon and Luis A. Garcia. 2023. Continuous Stress Monitoring for Healthcare Workers: Evaluating Generalizability Across Real-World Datasets. In Proceedings of the 14th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics (BCB '23) (Houston, TX, USA). ACM, New York, NY, USA, Association for Computing Machinery, New York, NY, USA, 5. https://doi.org/10.1145/3584371.3612974
[10]
Y. S. Can, N. Chalabianloo, D. Ekiz, and C. Ersoy. 2019. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study. Sensors 19, 8 (2019), 1849. https://doi.org/10.3390/s19081849
[11]
N.V. Chawla, K.W. Bowyer, L.O. Hall, and W.P. Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research 16 (2002), 321--357. https://doi.org/10.1613/jair.953
[12]
J. Chen, J. Rogers, C. Chen, and D. Kotz. 2021. Stress Detection Using Context-Aware Sensor Fusion From Wearable Devices. IEEE Internet of Things Journal 8, 15 (2021), 12148--12161. https://doi.org/10.1109/JIOT.2023.3265768
[13]
Minsoo Choy, Daehoon Kim, Jae-Gil Lee, Heeyoung Kim, and Hiroshi Motoda. 2016. Looking back on the current day: interruptibility prediction using daily behavioral features. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp '16). Association for Computing Machinery, New York, NY, USA, 1004--1015. https://doi.org/10.1145/2971648.2971649
[14]
Matteo Ciman and Katarzyna Wac. 2018. Individuals' Stress Assessment Using Human-Smartphone Interaction Analysis. IEEE Transactions on Affective Computing 9, 1 (2018), 51--65. https://doi.org/10.1109/TAFFC.2016.2592504
[15]
Sharon M Crook, Andrew P Davison, and Hans E Plesser. 2013. Learning from the past: approaches for reproducibility in computational neuroscience. In 20 Years of Computational Neuroscience. Springer, 73--102. https://link.springer.com/chapter/10.1007/978-1-4614-1424-7_4
[16]
R. Ferdous, V. Osmani, and O. Mayora. 2015. Smartphone app usage as a predictor of perceived stress levels at workplace. In 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth). IEEE, 225--228. https://doi.org/10.4108/icst.pervasivehealth.2015.260192
[17]
Anna Ferrari, Daniela Micucci, Marco Mobilio, and Paolo Napoletano. 2020. On the Personalization of Classification Models for Human Activity Recognition. IEEE Access 8 (2020), 32066--32079. https://doi.org/10.1109/ACCESS.2020.2973425
[18]
Y. Fukazawa, N. Yamamoto, T. Hamatani, K. Ochiai, A. Uchiyama, and K. Ohta. 2020. Smartphone-based Mental State Estimation: A Survey from a Machine Learning Perspective. Journal of Information Processing 28, 3 (2020), 650--669. https://doi.org/10.2197/ipsjjip.28.650
[19]
Nan Gao, Soundariya Ananthan, Chun Yu, Yuntao Wang, and Flora D. Salim. 2023. Critiquing Self-report Practices for Human Mental and Wellbeing Computing at Ubicomp. arXiv:2311.15496 [cs.HC]
[20]
Nan Gao, Mohammad Saiedur Rahaman, Wei Shao, and Flora D Salim. 2021. Investigating the Reliability of Self-report Data in the Wild: The Quest for Ground Truth (UbiComp/ISWC '21 Adjunct). Association for Computing Machinery, New York, NY, USA, 237--242. https://doi.org/10.1145/3460418.3479338
[21]
Enrique Garcia-Ceja, Venet Osmani, and Oscar Mayora-Ibarra. 2015. Automatic Stress Detection in Working Environments From Smartphones' Accelerometer Data: A First Step. IEEE Journal of Biomedical and Health Informatics 20 (2015), 1053--1060. https://api.semanticscholar.org/CorpusID:3738191
[22]
Karen Gasper. 2023. A Case for Neutrality: Why Neutral Affect is Critical for Advancing Affective Science. Affective Science 4 (2023), 458--462. https://doi.org/10.1007/s42761-023-00214-0
[23]
Surjya Ghosh, Niloy Ganguly, Bivas Mitra, and Pradipta De. 2017. Evaluating effectiveness of smartphone typing as an indicator of user emotion. In 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII). 146--151. https://doi.org/10.1109/ACII.2017.8273592
[24]
Martin Gjoreski, Hristijan Gjoreski, Mitja Lutrek, and Matja Gams. 2015. Automatic Detection of Perceived Stress in Campus Students Using Smartphones. In 2015 International Conference on Intelligent Environments. 132--135. https://doi.org/10.1109/IE.2015.27
[25]
Google Developers. n.d. Generalization - Machine Learning Crash Course. https://developers.google.com/machine-learning/crash-course/generalization/video-lecture. Accessed: 2024-03-25.
[26]
Tom Gross and Tony Malzhacker. 2023. The Experience Sampling Method and its Tools: A Review for Developers, Study Administrators, and Participants. Proceedings of the ACM on Human-Computer Interaction 7, EICS (2023), 182:1--182:29.
[27]
Megha V. Gupta, Shubhangi Vaikole, Ankit D. Oza, Amisha Patel, Diana Petronela Burduhos-Nergis, and Dumitru Doru Burduhos-Nergis. 2022. Audio-Visual Stress Classification Using Cascaded RNN-LSTM Networks. Bioengineering 9, 10 (2022), 510. https://doi.org/10.3390/bioengineering9100510
[28]
Mathias Harrer, Sophia H. Adam, Harald Baumeister, Pim Cuijpers, Eirini Karyotaki, Randy P. Auerbach, Ronald C. Kessler, Ronny Bruffaerts, Matthias Berking, and David D. Ebert. 2019. Internet interventions for mental health in university students: A systematic review and meta-analysis. International Journal of Methods in Psychiatric Research 28, 2 (2019), 1--18. https://doi.org/10.1002/mpr.1759
[29]
S. Hosseini, S. Katragadda, R. T. Bhupatiraju, Z. Ashkar, C. W. Borst, K. Cochran, and R. Gottumukkala. 2021. A multimodal sensor dataset for continuous stress detection of nurses in a hospital. arXiv preprint arXiv:2108.07689 (2021). https://arxiv.org/abs/2108.07689
[30]
Galen Chin-Lun Hung, Pei-Ching Yang, Chia-Chi Chang, Jung-Hsien Chiang, and Ying-Yeh Chen. 2016. Predicting Negative Emotions Based on Mobile Phone Usage Patterns: An Exploratory Study. 5, 3 (2016), e160.
[31]
Salar Jafarlou, Jocelyn Lai, Iman Azimi, Zahra Mousavi, Sina Labbaf, Ramesh C Jain, Nikil Dutt, Jessica L Borelli, and Amir Rahmani. 2023. Objective Prediction of Next-Day's Affect Using Multimodal Physiological and Behavioral Data: Algorithm Development and Validation Study. JMIR Formative Research 7 (2023). https://doi.org/10.2196/39425
[32]
Taejae Jeon, Han Byeol Bae, Yongju Lee, Sungjun Jang, and Sangyoun Lee. 2021. Deep-Learning-Based Stress Recognition with Spatial-Temporal Facial Information. Sensors 21, 22 (2021), 7498. https://doi.org/10.3390/s21227498
[33]
Gyuwon Jung, Sangjun Park, and Uichin Lee. 2024. DeepStress: Supporting Stressful Context Sensemaking in Personal Informatics Systems Using a Quasi-experimental Approach. In Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA.
[34]
Gyuwon Jung, Sangjun Park, Eun-Yeol Ma, Heeyoung Kim, and Uichin Lee. 2024. A Tutorial on Matching-based Causal Analysis of Human Behaviors Using Smartphone Sensor Data. ACM Comput. Surv. (feb 2024). https://doi.org/10.1145/3648356 Just Accepted.
[35]
S. Kang, W. Choi, C. Y. Park, N. Cha, A. Kim, A. H. Khandoker, L. Hadjileontiadis, H. Kim, Y. Jeong, and U. Lee. 2023. K-EmoPhone: A Mobile and Wearable Dataset with In-Situ Emotion, Stress, and Attention Labels. Scientific Data 10 (2023). https://doi.org/10.1038/s41597-023-01234-6
[36]
Maryam Khalid and Akane Sano. 2022. Exploiting Social Graph Networks for Emotion Prediction. Scientific Reports 13 (2022), 60691.
[37]
Mohammed Khwaja, Sumer S. Vaid, Sara Zannone, Gabriella M. Harari, A. Aldo Faisal, and Aleksandar Matic. 2019. Modeling Personality vs. Modeling Personalidad: In-the-wild Mobile Data Analysis in Five Countries Suggests Cultural Impact on Personality Models. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 3, Article 88 (sep 2019), 24 pages. https://doi.org/10.1145/3351246
[38]
T. Kim, H. Kim, H. Y. Lee, H. Goh, S. Abdigapporov, M. Jeong, H. Cho, K. Han, Y. Noh, S. J. Lee, and H. Hong. 2022. Prediction for Retrospection: Integrating Algorithmic Stress Prediction into Personal Informatics Systems for College Students' Mental Health. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 20 pages. https://doi.org/10.1145/3491102.3517701
[39]
S. Koldijk, M. Sappelli, M. Neerincx, S. Verberne, and W. Kraaij. 2014. The SWELL Knowledge Work Dataset for Stress and User Modeling Research. In Proceedings of the 16th ACM International Conference on Multimodal Interaction (ICMI '14). ACM, 291--298. https://doi.org/10.1145/2663204.2663257
[40]
Reed Larson and Mihaly Csikszentmihalyi. 2014. The Experience Sampling Method. Springer Netherlands, Dordrecht, 21--34. https://doi.org/10.1007/978-94-017-9088-8_2
[41]
Boning Li and Akane Sano. 2020. Extraction and Interpretation of Deep Autoencoder-based Temporal Features from Wearables for Forecasting Personalized Mood, Health, and Stress. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 2, Article 49 (jun 2020), 26 pages. https://doi.org/10.1145/3397318
[42]
S. M. Matingly, J. M. Gregg, P. Audia, A. E. Bayraktaroglu, A. T. Campbell, N. V. Chawla, V. Das Swain, M. De Choudhury, S. D. D'Mello, A. K. Dey, G. Gao, K. Jagannath, K. Jiang, S. Lin, Q. Liu, G. Mark, G. J. Martinez, K. Masaba, S. Mirjafari, E. Moskal, R. Mulukutla, K. Nies, M. D. Reddy, P. Robles-Granda, K. Saha, A. Sirigiri, and A. Striegel. 2019. The Tesserae Project: Large-Scale, Longitudinal, In Situ, Multimodal Sensing of Information Workers. In CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI'19 Extended Abstracts). https://www3.nd.edu/~dwang5/documents/chi19extendedabstracts.pdf
[43]
M.B.A. McDermott, S. Wang, N. Marinsek, R. Ranganath, M. Ghassemi, and L. Foschini. 2021. Reproducibility in machine learning for health research: Still a ways to go. Science Translational Medicine 13, 586 (2021), eabb1655. https://doi.org/10.1126/scitranslmed.abb1655
[44]
D. McDuff, A. Karlson, A. Kapoor, A. Roseway, and M. Czerwinski. 2012. AffectAura: An Intelligent System for Emotional Memory. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, Association for Computing Machinery, New York, NY, USA, 849--858. https://doi.org/10.1145/2207676.2208545
[45]
L. Meegahapola et al. 2023. Generalization and Personalization of Mobile Sensing-Based Mood Inference Models: An Analysis of College Students in Eight Countries. In Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT). ACM. https://dl.acm.org/doi/abs/10.1145/3569483
[46]
L. Meegahapola, H. Hassoune, and D. Gatica-Perez. 2024. M3BAT: Unsupervised Domain Adaptation for Multimodal Mobile Sensing with Multi-Branch Adversarial Training. ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT/ Ubicomp) (2024).
[47]
L. Meegahapola, A.R. Mader, and D. Gatica-Perez. 2024. Learning about Social Context from Smartphone Data: Generalization Across Countries and Daily Life Moments. In Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI). To appear.
[48]
Lakmal Meegahapola, Salvador Ruiz-Correa, Viridiana del Carmen Robledo-Valero, Emilio Ernesto Hernandez-Huerfano, Leonardo Alvarez-Rivera, Ronald Chenu-Abente, and Daniel Gatica-Perez. 2021. One More Bite? Inferring Food Consumption Level of College Students Using Smartphone Sensing and Self-Reports. 5, 1, Article 26 (2021), 28 pages. https://doi.org/10.1145/3448120
[49]
Abhinav Mehrotra and Mirco Musolesi. 2018. Using Autoencoders to Automatically Extract Mobility Features for Predicting Depressive States. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2, 3, Article 127 (sep 2018), 20 pages. https://doi.org/10.1145/3264937
[50]
G. Mikelsons, M. Smith, A. Mehrotra, and M. Musolesi. 2017. Towards Deep Learning Models for Psychological State Prediction using Smartphone Data: Challenges and Opportunities. In Proceedings of the NIPS Workshop on Machine Learning for Healthcare 2017 (ML4H 2017). https://doi.org/10.48550/arXiv.1711.06350
[51]
V. Mishra, T. Hao, S. Sun, K. N. Walter, M. J. Ball, C. H. Chen, and X. Zhu. 2018. Investigating the Role of Context in Perceived Stress Detection in the Wild. In Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers (UbiComp '18). Association for Computing Machinery, New York, NY, USA, Association for Computing Machinery, New York, NY, USA, 1754--1759. https://doi.org/10.1145/3267305.3274147
[52]
Varun Mishra, Gunnar Pope, Sarah Lord, Stephanie Lewia, Byron Lowens, Kelly Caine, Sougata Sen, Ryan Halter, and David Kotz. 2020. Continuous Detection of Physiological Stress with Commodity Hardware. ACM Trans. Comput. Healthcare 1, 2, Article 8 (apr 2020), 30 pages. https://doi.org/10.1145/3361562
[53]
Varun Mishra, Sougata Sen, Grace Chen, Tian Hao, Jeffrey Rogers, Ching-Hua Chen, and David Kotz. 2020. Evaluating the Reproducibility of Physiological Stress Detection Models. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 4, 4, Article 147 (dec 2020), 29 pages. https://doi.org/10.1145/3432220
[54]
Amir Muaremi, Bert Arnrich, and Gerhard Tröster. 2013. Towards Measuring Stress with Smartphones and Wearable Devices During Workday and Sleep. Bionanoscience 3, 2 (2013), 172--183. https://doi.org/10.1007/s12668-013-0089-2
[55]
K. Mundnich, B. M. Booth, M. L'Hommedieu, T. Feng, B. Girault, J. L'Hommedieu, M. Wildman, S. Skaaden, A. Nadarajan, J. L. Villatte, T. H. Falk, K. Lerman, E. Ferrara, and S. Narayanan. 2020. TILES-2018, a longitudinal physiologic and behavioral data set of hospital workers. Scientific Data 7 (2020). https://doi.org/10.1038/s41597-020-00630-y
[56]
M. L. Pariat, A. Rynjah, M. Joplin, and M. G. Kharjana. 2014. Stress Levels of College Students: Interrelationship between Stressors and Coping Strategies. IOSR Journal Of Humanities And Social Science (IOSR-JHSS) 19 (2014). Issue 8. www.iosrjournals.org
[57]
C. Y. Park, N. Cha, S. Kang, A. Kim, A. H. Khandoker, L. Hadjileontiadis, A. Oh, Y. Jeong, and U. Lee. 2020. K-EmoCon: A multimodal sensor dataset for continuous emotion recognition in naturalistic conversations. Scientific Data 7, 1 (2020), 293. https://doi.org/10.1038/s41597-020-00630-y
[58]
Limor Peer and Vicky Rampin. 2021. Reproducibility Principles: Taking the Pulse. https://reproducibility.acm.org/2021/04/08/reproducibility-principles-taking-the-pulse/ Accessed: 2024-03-25.
[59]
Eugenia Politou, Efthimios Alepis, and Constantinos Patsakis. 2017. A survey on mobile affective computing. Computer Science Review 25 (2017), 79--100. https://doi.org/10.1016/j.cosrev.2017.07.002
[60]
A. Pratap, D. C. Atkins, B. N. Renn, M. J. Tanana, S. D. Mooney, J. A. Anguera, and P. A. Areán. 2019. The accuracy of passive phone sensors in predicting daily mood. Depression and Anxiety 36, 1 (2019), 72--81. https://doi.org/10.1002/da.22822
[61]
Edward Raff. 2019. A Step Toward Quantifying Independently Reproducible Machine Learning Research. In Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 492, 5485--5495. https://dl.acm.org/doi/10.5555/3454287.3454779
[62]
E. L. Rosenberg and P. Ekman. 2005. Coherence Between Expressive and Experiential Systems in Emotion. Oxford University Press, 63--88. https://doi.org/10.1093/acprof:oso/9780195179644.003.0004
[63]
Akane Sano and Rosalind W. Picard. 2013. Stress Recognition Using Wearable Sensors and Mobile Phones. In 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction. IEEE. https://doi.org/10.1109/ACII.2013.117
[64]
Philip Schmidt, Attila Reiss, Robert Duerichen, Claus Marberger, and Kristof Van Laerhoven. 2018. Introducing WESAD, a Multimodal Dataset for Wearable Stress and Affect Detection. In Proceedings of the 2018 on International Conference on Multimodal Interaction - ICMI '18. Association for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3242969.3242985
[65]
A. Shaw, N. Simsiri, I. Deznabi, M. Fiterau, and T. Rahman. 2019. Personalized Student Stress Prediction with Deep Multitask Network. In Proceedings of the 1st Adaptive & Multitask Learning Workshop (Long Beach, California).
[66]
Thomas Stütz, Thomas Kowar, Michael Kager, Martin Tiefengrabner, Markus Stuppner, Jens Blechert, Frank H. Wilhelm, and Simon Ginzinger. 2015. Smartphone Based Stress Prediction. In User Modeling, Adaptation and Personalization. UMAP 2015. Lecture Notes in Computer Science(), Vol. 9146. Springer International Publishing, Cham, 240--251. https://doi.org/10.1007/978-3-319-20267-9_20
[67]
S. Taylor, N. Jaques, E. Nosakhare, A. Sano, and R. Picard. 2020. Personalized Multitask Learning for Predicting Tomorrow's Mood, Stress, and Health. IEEE Transactions on Affective Computing 11, 2 (April-June 2020), 200--213. https://doi.org/10.1109/TAFFC.2017.2784832
[68]
Ali Tazarv, Sina Labbaf, Amir Rahmani, Nikil Dutt, and Marco Levorato. 2023. Active Reinforcement Learning for Personalized Stress Monitoring in Everyday Settings. In 2023 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE). Association for Computing Machinery, New York, NY, USA, 44--55. https://doi.org/10.1145/3580252.3586979
[69]
A. Tazarv, S. Labbaf, S. M. Reich, N. Dutt, A. M. Rahmani, and M. Levorato. 2021. Personalized Stress Monitoring using Wearable Sensors in Everyday Settings. In 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC). IEEE, 9630224.
[70]
Kobiljon Toshnazarov, Uichin Lee, Byung Hyung Kim, Varun Mishra, Lismer Andres Caceres Najarro, and Youngtae Noh. 2024. SOSW: Stress Sensing With Off-the-Shelf Smartwatches in the Wild. IEEE Internet of Things Journal (2024), 1--1. https://doi.org/10.1109/JIOT.2024.3375299
[71]
L.C. Towbes and L.H. Cohen. 1996. Chronic stress in the lives of college students: Scale development and prospective prediction of distress. Journal of Youth and Adolescence 25, 2 (1996), 199--217. https://doi.org/10.1007/BF01537344
[72]
Fani Tsapeli and Mirco Musolesi. 2015. Investigating Causality in Human Behavior From Smartphone Sensor Data: A Quasi-Experimental Approach. EPJ Data Science 4, 1 (2015), 24. https://doi.org/10.1140/epjds/s13688-015-0061-1
[73]
J. Vamsinath, B. Varshini, T. Sandeep, V. Meghana, and B. Latha. 2022. Stress detection using non-semantic speech representation. In 2022 32nd International Conference Radioelektronika (RADIOELEKTRONIKA). 1--6. https://doi.org/10.1109/RADIOELEKTRONIKA54537.2022.9764916
[74]
J. Vamsinath, B. Varshini, T. Sandeep, V. Meghana, and B. Latha. 2023. A Survey on Stress Detection Through Speech Analysis Using Machine Learning. International Journal of Scientific Research in Science and Technology 9, 4 (2023), 326--333. https://doi.org/10.32628/IJSRST229436
[75]
Gideon Vos, Kelly Trinh, Zoltan Sarnyai, and Mostafa Rahimi Azghadi. 2023. Generalizable Machine Learning for Stress Monitoring from Wearable Devices: A Systematic Literature Review. International Journal of Medical Informatics 173 (May 2023).
[76]
R. Wang, M. S. H. Aung, S. Abdullah, R. Brian, A. T. Campbell, T. Choudhury, M. Hauser, J. Kane, M. Merrill, E. A. Scherer, V. W. S. Tseng, and D. Ben-Zeev. 2016. CrossCheck: Toward passive sensing and detection of mental health changes in people with schizophrenia. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing. Association for Computing Machinery, New York, NY, USA, 886--897. https://ubicomplab.cs.washington.edu/pdfs/crosscheck.pdf
[77]
R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. 2014. StudentLife: Assessing Mental Health, Academic Performance and Behavioral Trends of College Students using Smartphones. In Proceedings of the ACM Conference on Ubiquitous Computing. Association for Computing Machinery, New York, NY, USA, 3--14. https://studentlife.cs.dartmouth.edu/ubicomp2014.pdf
[78]
Tong Xia, Jing Han, Abhirup Ghosh, and Cecilia Mascolo. 2023. Cross-Device Federated Learning for Mobile Health Diagnostics: A First Study on COVID-19 Detection. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1--5. https://doi.org/10.1109/ICASSP49357.2023.10096427
[79]
Xuhai Xu, Xin Liu, Han Zhang, Weichen Wang, Subigya Nepal, Yasaman Sefidgar, Woosuk Seo, Kevin S. Kuehn, Jeremy F. Huckins, Margaret E. Morris, Paula S. Nurius, Eve A. Riskin, Shwetak Patel, Tim Althoff, Andrew Campbell, Anind K. Dey, and Jennifer Mankoff. 2023. GLOBEM: Cross-Dataset Generalization of Longitudinal Human Behavior Modeling. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 6, 4, Article 190 (jan 2023), 34 pages. https://doi.org/10.1145/3569485
[80]
X. Xu, R. Wang, F. Chen, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. 2022. GLOBEM Dataset: Multi-Year Datasets for Longitudinal Human Behavior Modeling Generalization. arXiv preprint arXiv:2202.07051 (2022). https://arxiv.org/abs/2202.07051
[81]
Kangning Yang, Benjamin Tag, Chaofan Wang, Yue Gu, Zhanna Sarsenbayeva, Tilman Dingler, Greg Wadley, and Jorge Goncalves. 2023. Survey on Emotion Sensing Using Mobile Devices. IEEE Transactions on Affective Computing 14, 4 (2023), 2678--2696. https://doi.org/10.1109/TAFFC.2022.3220484
[82]
J. C. Yau, B. Girault, T. Feng, K. Mundnich, A. Nadarajan, B. M. Booth, E. Ferrara, K. Lerman, E. Hsieh, and S. Narayanan. 2022. TILES-2019: A longitudinal physiologic and behavioral data set of medical residents in an intensive care unit. Scientific Data 9 (2022). https://doi.org/10.1038/s41597-022-01234-6
[83]
Xue Ying. 2019. An Overview of Overfitting and its Solutions. Journal of Physics: Conference Series 1168, 2 (feb 2019), 022022. https://doi.org/10.1088/1742-6596/1168/2/022022
[84]
Han Yu and Akane Sano. 2023. Semi-Supervised Learning for Wearable-based Momentary Stress Detection in the Wild. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 2 (2023), Article 80. https://doi.org/10.1145/3596246

Cited By

View all
  • (2024)Systematic Evaluation of Personalized Deep Learning Models for Affect RecognitionProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997248:4(1-35)Online publication date: 21-Nov-2024
  • (2024)Lipwatch: Enabling Silent Speech Recognition on Smartwatches using Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36596148:2(1-29)Online publication date: 15-May-2024
  • (2024)Sensing to Hear through MemoryProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36595988:2(1-31)Online publication date: 15-May-2024

Index Terms

  1. A Reproducible Stress Prediction Pipeline with Mobile Sensor Data
    Index terms have been assigned to the content through auto-classification.

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 8, Issue 3
    August 2024
    1782 pages
    EISSN:2474-9567
    DOI:10.1145/3695755
    Issue’s Table of Contents
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 09 September 2024
    Published in IMWUT Volume 8, Issue 3

    Check for updates

    Author Tags

    1. Mobile Health
    2. Reproducibility
    3. Stress Prediction

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)421
    • Downloads (Last 6 weeks)182
    Reflects downloads up to 11 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Systematic Evaluation of Personalized Deep Learning Models for Affect RecognitionProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36997248:4(1-35)Online publication date: 21-Nov-2024
    • (2024)Lipwatch: Enabling Silent Speech Recognition on Smartwatches using Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36596148:2(1-29)Online publication date: 15-May-2024
    • (2024)Sensing to Hear through MemoryProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36595988:2(1-31)Online publication date: 15-May-2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media