[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3654823.3654871acmotherconferencesArticle/Chapter ViewAbstractPublication PagescacmlConference Proceedingsconference-collections
research-article

Freeway Trajectory Prediction via SpatiotemporalTransformers

Published: 29 May 2024 Publication History

Abstract

For autonomous driving, accurate trajectory prediction is paramount, necessitating effective harnessing of spatiotemporal data. This study proposes an innovative Spatiotemporal Transformer-based model, enhancing trajectory prediction precision by leveraging a multi-head self-attention mechanism. This mechanism intricately captures both inter-vehicular interactions and temporal trajectory dependencies. The model, structured around an LSTM-based encoder-decoder framework, innovatively considers spatial interactions among observed and future trajectories during the decoding process. Evaluated on the NGSIM dataset, our model demonstrates superior predictive accuracy over existing methodologies, underscoring the efficacy of Spatiotemporal Transformers in complex dynamic environments.

References

[1]
[1] Li, X., a, J., Chen, X., Tan, Y., Chen, J. (2022). SIT: A spatial interaction-aware transformer-based model for freeway trajectory prediction. ISPRS International Journal of Geo-Information, 11(2), 79.
[2]
[2] Deo, N.; Trivedi, M.M. Convolutional Social Pooling for Vehicle Trajectory Prediction. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June 2018; IEEE: Salt Lake City, UT, USA, 2018; pp. 1549–15498.
[3]
[3] Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2017, arXiv:abs/1706.03762.
[4]
[4] Pang, Y.; Zhao, X.; Hu, J.; Yan, H.; Liu, Y. Bayesian Spatio-Temporal Graph Transformer Network (B-Star) for Multi-Aircraft Trajectory Prediction. Available online: https://ssrn.com/abstract=3981312 (accessed on 30 December 2021).
[5]
[5] Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. arXiv 2014, arXiv:1412.3555.
[6]
[6] Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780.
[7]
[7] Li, X.; Ying, X.; Chuah, M.C. GRIP: Graph-Based Interaction-Aware Trajectory Prediction. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 3960–3966.
[8]
[8] Z. He, Z. Jin, and Y. Zhao,“Srdrl: A blind super- resolution framework with degradationreconstruction loss,”IEEE Transactions on Multimedia,vol.24, pp.2877-2889,2021.
[9]
[9] Y.Qiu, K.Zhang,C.Wang, W.Luo,H. Li,and Z. Jin, “Mb-taylorformer: Multi-branch efficient transformer ex- panded by taylor formula for image dehazing,"in Pro- ceedings of the IEEE/CVFInternational Conference on Computer Vision,2023, pp.12802-12813.
[10]
[10] Yang, T.; Nan, Z.; Zhang, H.; Chen, S.; Zheng, N. Traffic Agent Trajectory Prediction Using Social Convolution and Attention Mechanism. arXiv 2020, arXiv:2007.02515.
[11]
[11] Yu, B.; Yin, H.; Zhu, Z. Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting. arXiv 2018, arXiv:1709.04875.
[12]
[12] Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. Traffic Predict: Trajectory Prediction for Heterogeneous Traffic-Agents. arXiv 2019, arXiv:1811.02146.
[13]
[13] Giuliari, F.; Hasan, I.; Cristani, M.; Galasso, F. Transformer Networks for Trajectory Forecasting. arXiv 2020, arXiv:2003.08111.
[14]
[14] Zhang, P.; Ouyang, W.; Zhang, P.; Xue, J.; Zheng, N. SR-LSTM: State Refinement for LSTM towards Pedestrian Trajectory Prediction. arXiv 2019, arXiv:1903.02793.
[15]
[15] Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks. arXiv 2018, arXiv:1803.10892.
[16]
[16] Hasan, I.; Setti, F.; Tsesmelis, T.; Del Bue, A.; Galasso, F.; Cristani, M. MX-LSTM: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses. arXiv 2018, arXiv:1805.00652.
[17]
[17] Gupta, A.; Johnson, J.; Fei-Fei, L.; Savarese, S.; Alahi, A. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks. arXiv 2018, arXiv:1803.10892.
[18]
[18] Hasan, I.; Setti, F.; Tsesmelis, T.; Del Bue, A.; Galasso, F.; Cristani, M. MX-LSTM: Mixing Tracklets and Vislets to Jointly Forecast Trajectories and Head Poses. arXiv 2018, arXiv:1805.00652.
[19]
[19] Yang, T.; Nan, Z.; Zhang, H.; Chen, S.; Zheng, N. Traffic Agent Trajectory Prediction Using Social Convolution and Attention Mechanism. arXiv 2020, arXiv:2007.02515.

Index Terms

  1. Freeway Trajectory Prediction via SpatiotemporalTransformers

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    CACML '24: Proceedings of the 2024 3rd Asia Conference on Algorithms, Computing and Machine Learning
    March 2024
    478 pages
    ISBN:9798400716416
    DOI:10.1145/3654823
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2024

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Autonomous driving
    2. LSTM
    3. Trajectory prediction
    4. Transformer

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    • National Natural Science Foundation of China
    • Guangzhou Science and Technology Planning Project
    • National Natural Science Foundation of China
    • Guangdong Basic and Applied Research Foundation
    • Nansha Key RD Program
    • Science and Technology Planning Project of Guangdong Province
    • Guangdong Natural Science Foundation
    • Guangdong Basic and Applied Research Foundation

    Conference

    CACML 2024

    Acceptance Rates

    Overall Acceptance Rate 93 of 241 submissions, 39%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 22
      Total Downloads
    • Downloads (Last 12 months)22
    • Downloads (Last 6 weeks)7
    Reflects downloads up to 10 Dec 2024

    Other Metrics

    Citations

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media