Can Perturbations Help Reduce Investment Risks? Risk-aware Stock Recommendation via Split Variational Adversarial Training
Abstract
1 Introduction
2 Preliminary
2.1 Problem Formulation
2.2 Adversarial Training Definition
3 Methodology
3.1 Motivation
3.2 Overview
3.3 Variational Perturbation Generator
3.3.1 Perturbation Extractor.
3.3.2 Posterior Encoder.
3.3.3 Generative Decoder.
3.3.4 Explanation for VPG.
3.3.5 Theoretical Justification.
3.4 Model Training
4 Experiments
4.1 Experimental Setting
4.1.1 Datasets.
Dataset | NASDAQ | NYSE | CASE | NASDAQ_08 | NYSE_08 | CASE_08 |
---|---|---|---|---|---|---|
Train(Tr) Period | 01/2013–12/2015 | 01/2013–12/2015 | 03/2016–04/2019 | 01/2002–12/2006 | 01/2002–12/2006 | 01/2002–12/2006 |
Valid(Va) Period | 01/2016–12/2016 | 01/2016–12/2016 | 04/2019–04/2020 | 01/2007–10/2007 | 01/2007–10/2007 | 01/2007–10/2007 |
Test(Te) Period | 01/2017–12/2017 | 01/2017–12/2017 | 04/2020–03/2022 | 11/2007–12/2008 | 11/2007–12/2008 | 11/2007–12/2008 |
\(\#\)Days(Tr:Va:Te) | 756:252:237 | 756:252:237 | 756:252:456 | 1259:211:295 | 1259:211:295 | 1205:201:289 |
\(\#\)Stocks | 1,026 | 1,737 | 4,465 | 656 | 1,115 | 1,520 |
4.1.2 Baselines.
4.1.3 Evaluation Metrics.
4.1.4 Training Setup.
4.1.5 Discussion: Predictability of Stock Daily Returns.
4.2 RQ1: Performance Comparison of Normal Economic Environment
Dataset | NASDAQ | NYSE | CASE | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) |
Buy&Hold | 0.24 | 2.43 | \(2.57\%\) | 0.14 | 1.96 | \(1.58\%\) | 0.22 | 0.71 | \(4.50\%\) |
ARIMA | 0.10 | 0.55 | \(8.21\%\) | 0.10 | 0.33 | \(7.15\%\) | 0.23 | 0.30 | \(8.53\%\) |
LSTM | 0.22 | 0.95 | \(7.37\%\) | 0.12 | 0.79 | 5.72% | 0.35 | 0.53 | \(7.75\%\) |
GCN | 0.13 | 0.46 | \(7.91\%\) | 0.16 | 0.72 | \(6.20\%\) | 0.43 | 1.03 | \(7.33\%\) |
RSR-E | 0.26 | 1.12 | \(7.35\%\) | 0.20 | 0.88 | \(5.86\%\) | 0.56 | 0.96 | 5.95% |
RSR-I | 0.39 | 1.34 | \(6.75\%\) | 0.21 | 0.95 | \(6.34\%\) | 0.58 | 1.04 | \(7.95\%\) |
ANN-SVM | 0.32 | 1.28 | 5.73% | 0.33 | 1.14 | \(8.59\%\) | 0.26 | 0.43 | \(5.97\%\) |
STHAN-SR | 0.44 | 1.42 | \(6.37\%\) | 0.33 | 1.12 | \(6.09\%\) | 0.71 | 1.09 | \(7.80\%\) |
SVAT (Ours) | \(\mathbf {0.59}\) | \(\mathbf {3.10}\) | \(\mathbf {3.29\%}\) | \(\mathbf {0.38}\) | \(\mathbf {2.61}\) | \(\mathbf {3.13\%}\) | \(\mathbf {0.79}\) | \(\mathbf {1.50}\) | \(\mathbf {5.88\%}\) |
4.3 RQ2: Performance Comparison of Financial Crisis Period
Dataset | NASDAQ_08 | NYSE_08 | CASE_08 | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) |
Buy&Hold | \(-493.53\) | \(-113.76\) | \(9.14\%\) | \(-530.75\) | \(-118.83\) | \(9.73\%\) | \(-913.38\) | \(-177.13\) | \(7.73\%\) |
ARIMA | \(-129.24\) | \(-24.33\) | \(11.10\%\) | \(-81.27\) | \(-16.68\) | 14.51% | \(-232.89\) | \(-35.75\) | \(10.52\%\) |
LSTM | \(-142.63\) | \(-32.17\) | 10.62% | \(-61.48\) | \(-8.26\) | \(17.27\%\) | \(-126.65\) | \(-20.66\) | 10.12% |
GCN | \(-139.23\) | \(-25.54\) | \(14.36\%\) | \(-48.59\) | \(-11.96\) | \(16.28\%\) | \(-159.01\) | \(-25.76\) | \(10.47\%\) |
RSR-E | \(-71.21\) | \(-15.74\) | \(13.72\%\) | \(-15.90\) | \(-3.19\) | \(22.14\%\) | \(-21.56\) | \(-5.80\) | \(10.94\%\) |
RSR-I | \(-11.13\) | \(-4.50\) | \(14.23\%\) | \(-10.91\) | \(-3.43\) | \(14.74\%\) | \(-21.50\) | \(-5.55\) | \(10.87\%\) |
ANN-SVM | \(-54.12\) | \(-7.30\) | \(17.05\%\) | \(-38.34\) | \(-5.36\) | \(19.43\%\) | \(-30.03\) | \(-6.33\) | \(10.28\%\) |
STHAN-SR | −8.60 | \(\mathbf {-2.78}\) | \(16.53\%\) | −7.35 | −2.54 | \(23.66\%\) | −13.10 | −3.96 | \(10.73\%\) |
SVAT (Ours) | \(\mathbf {-0.11}\) | −3.14 | \(\mathbf {9.62\%}\) | \(\mathbf {-0.0916}\) | \(\mathbf {-2.23}\) | \(\mathbf {13.23\%}\) | \(\mathbf {-2.26}\) | \(\mathbf {-2.91}\) | \(\mathbf {9.39\%}\) |
4.4 RQ3: Correlations between All Methods
4.5 RQ4: Effectiveness of Model Design
4.5.1 Effects of SVAT on Other Baselines.
Dataset | NASDAQ | NYSE | CASE | Better Results | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Model | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | Count |
LSTM | 0.22 | 0.95 | \(7.37\%\) | 0.12 | 0.79 | \(5.72\%\) | 0.35 | 0.53 | \(7.75\%\) | 0 |
SVAT+LSTM | \(\mathbf {0.37}\) | \(\mathbf {1.67}\) | \(\mathbf {3.64\%}\) | \(\mathbf {0.25}\) | \(\mathbf {0.92}\) | \(\mathbf {5.05\%}\) | \(\mathbf {0.37}\) | \(\mathbf {0.95}\) | \(\mathbf {6.92\%}\) | 9 |
GCN | 0.13 | 0.46 | \(7.91\%\) | 0.16 | 0.72 | \(6.20\%\) | 0.43 | 1.03 | \(7.33\%\) | 0 |
SVAT+GCN | \(\mathbf {0.24}\) | \(\mathbf {1.26}\) | \(\mathbf {4.19\%}\) | \(\mathbf {0.24}\) | \(\mathbf {0.83}\) | \(\mathbf {5.99\%}\) | \(\mathbf {0.53}\) | \(\mathbf {1.30}\) | \(\mathbf {6.41\%}\) | 9 |
RSR-E | \(\mathbf {0.26}\) | 1.12 | \(7.35\%\) | 0.20 | 0.88 | \(5.86\%\) | \(\mathbf {0.56}\) | 0.96 | \(5.95\%\) | 2 |
SVAT+RSR-E | 0.21 | \(\mathbf {1.16}\) | \(\mathbf {3.55\%}\) | \(\mathbf {0.25}\) | \(\mathbf {1.03}\) | \(\mathbf {4.97\%}\) | 0.55 | \(\mathbf {1.26}\) | \(\mathbf {4.85\%}\) | 7 |
RSR-I | \(\mathbf {0.39}\) | 1.34 | \(6.75\%\) | 0.21 | 0.95 | \(6.34\%\) | 0.58 | 1.04 | \(7.95\%\) | 1 |
SVAT+RSR-I | 0.36 | \(\mathbf {1.79}\) | \(\mathbf {5.72\%}\) | \(\mathbf {0.30}\) | \(\mathbf {1.11}\) | \(\mathbf {5.13\%}\) | \(\mathbf {0.60}\) | \(\mathbf {1.36}\) | \(\mathbf {6.72\%}\) | 8 |
ANN-SVM | 0.32 | 1.28 | \(5.73\%\) | 0.33 | 1.14 | \(8.59\%\) | 0.26 | 0.43 | \(5.97\%\) | 0 |
SVAT+ANN-SVM | \(\mathbf {0.48}\) | \(\mathbf {1.84}\) | \(\mathbf {4.51\%}\) | \(\mathbf {0.41}\) | \(\mathbf {1.17}\) | \(\mathbf {8.40\%}\) | \(\mathbf {0.42}\) | \(\mathbf {1.06}\) | \(\mathbf {4.74\%}\) | 9 |
Dataset | NASDAQ_08 | NYSE_08 | CASE_08 | Better Results | ||||||
Model | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | Count |
LSTM | \(-142.63\) | \(-32.17\) | \(10.62\%\) | \(-61.48\) | \(-8.26\) | \(17.27\%\) | \(-126.65\) | \(-20.66\) | \(10.12\%\) | 0 |
SVAT+LSTM | \(\mathbf {-79.31}\) | \(\mathbf {-14.84}\) | \(\mathbf {9.85\%}\) | \(\mathbf {-53.00}\) | \(\mathbf {-7.93}\) | \(\mathbf {14.91\%}\) | \(\mathbf {-64.41}\) | \(\mathbf {-11.07}\) | \(\mathbf {9.86\%}\) | 9 |
GCN | \(-139.23\) | \(-25.54\) | \(14.36\%\) | \(-48.59\) | \(-11.96\) | \(16.28\%\) | \(-159.01\) | \(-25.76\) | \(10.47\%\) | 0 |
SVAT+GCN | \(\mathbf {-68.44}\) | \(\mathbf {-8.23}\) | \(\mathbf {13.70\%}\) | \(\mathbf {-34.21}\) | \(\mathbf {-4.44}\) | \(\mathbf {14.84\%}\) | \(\mathbf {-71.21}\) | \(\mathbf {-12.86}\) | \(\mathbf {10.34\%}\) | 9 |
RSR-E | \(-71.21\) | \(-15.74\) | \(13.72\%\) | \(-15.90\) | \(\mathbf {-3.19}\) | \(22.14\%\) | \(-21.56\) | \(-5.80\) | \(10.94\%\) | 1 |
SVAT+RSR-E | \(\mathbf {-59.00}\) | \(\mathbf {-12.37}\) | \(\mathbf {9.26\%}\) | \(\mathbf {-10.99}\) | \(-3.60\) | \(\mathbf {14.22\%}\) | \(\mathbf {-4.83}\) | \(\mathbf {-2.64}\) | \(\mathbf {9.98\%}\) | 8 |
RSR-I | \(-11.13\) | \(-4.50\) | \(14.23\%\) | \(-10.91\) | \(-3.43\) | \(14.74\%\) | \(-21.50\) | \(-5.55\) | \(10.87\%\) | 0 |
SVAT+RSR-I | \(\mathbf {-3.20}\) | \(\mathbf {-3.63}\) | \(\mathbf {8.60\%}\) | \(\mathbf {-3.03}\) | \(\mathbf {-2.64}\) | \(\mathbf {14.00\%}\) | \(\mathbf {-4.17}\) | \(\mathbf {-2.61}\) | \(\mathbf {10.01\%}\) | 9 |
ANN-SVM | \(-54.12\) | \(\mathbf {-7.30}\) | \(17.05\%\) | \(-38.34\) | \(-5.36\) | \(19.43\%\) | \(-30.03\) | \(-6.33\) | \(10.28\%\) | 1 |
SVAT+ANN-SVM | \(\mathbf {-35.13}\) | \(-8.05\) | \(\mathbf {12.27\%}\) | \(\mathbf {-26.12}\) | \(\mathbf {-4.38}\) | \(\mathbf {17.96\%}\) | \(\mathbf {-17.41}\) | \(\mathbf {-4.89}\) | \(\mathbf {9.98\%}\) | 8 |
4.5.2 Ablation Study of Key Components.
Dataset | NASDAQ | NYSE | CASE | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) | IRR\(\uparrow\) | SR\(\uparrow\) | MDD\(\downarrow\) |
SVATw/oS | 0.47 | 2.84 | \(3.68\%\) | 0.12 | 1.26 | \(\mathbf {1.77\%}\) | 0.69 | 1.26 | \(6.69\%\) |
SVATw/oV | 0.42 | 2.20 | \(\mathbf {3.19\%}\) | 0.21 | 1.75 | \(1.88\%\) | 0.68 | 1.02 | \(6.56\%\) |
SVAT | \(\mathbf {0.59}\) | \(\mathbf {3.10}\) | \(3.29\%\) | \(\mathbf {0.38}\) | \(\mathbf {2.61}\) | \(3.13\%\) | \(\mathbf {0.79}\) | \(\mathbf {1.50}\) | \(\mathbf {5.88\%}\) |
Dataset | NASDAQ_08 | NYSE_08 | CASE_08 | ||||||
Model | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) | IRR\(^{\times 10^{-3}}\uparrow\) | SR\(^{\times 10^{-2}}\uparrow\) | MDD\(\downarrow\) |
SVATw/oS | \(-2.46\) | \(-2.41\) | \(11.76\%\) | \(-89.13\) | \(-15.35\) | \(16.68\%\) | \(-14.29\) | \(-4.42\) | \(9.97\%\) |
SVATw/oV | \(-0.74\) | \(\mathbf {-2.39}\) | \(15.76\%\) | \(-14.04\) | \(-5.66\) | \(\mathbf {8.35\%}\) | \(-15.62\) | \(-4.43\) | \(9.97\%\) |
SVAT | \(\mathbf {-0.11}\) | \(-3.14\) | \(\mathbf {9.62\%}\) | \(\mathbf {-0.0916}\) | \(\mathbf {-2.23}\) | \(13.23\%\) | \(\mathbf {-2.26}\) | \(\mathbf {-2.91}\) | \(\mathbf {9.39\%}\) |
4.6 RQ5: Parameter Sensitivity Analysis
4.6.1 Performance under Different Backtesting Strategies.
4.6.2 Impact of the Adversarial Hyperparameter.
4.7 RQ6: Risk Quantification by Ranking Entropy
5 Related Work
5.1 Stock Prediction
5.2 Risk Management
5.3 Adversarial Training
5.4 Variational Autoencoder
6 Conclusion
Footnotes
References
Index Terms
- Can Perturbations Help Reduce Investment Risks? Risk-aware Stock Recommendation via Split Variational Adversarial Training
Recommendations
Risks and Risk Control Measures of Risk Investment Projects in Investment Stagey
ICEE '12: Proceedings of the 2012 3rd International Conference on E-Business and E-Government - Volume 03Risk Investment is an investment of options with a high risk of failure, so that whether the investment process risks of Risk Investment Projects are controlled or not is the key to success. This paper expounds the principal risks of the seed stage, ...
Graph-Based Stock Recommendation by Time-Aware Relational Attention Network
The stock market investors aim at maximizing their investment returns. Stock recommendation task is to recommend stocks with higher return ratios for the investors. Most stock prediction methods study the historical sequence patterns to predict stock ...
Personalized Stock Recommendation with Investors' Attention and Contextual Information
SIGIR '23: Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information RetrievalThe personalized stock recommendation is a task to recommend suitable stocks for each investor. The personalized recommendations are valuable, especially in investment decision making as the objective of building a portfolio varies by each retail ...
Comments
Please enable JavaScript to view thecomments powered by Disqus.Information & Contributors
Information
Published In
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
Funding Sources
- National Natural Science Foundation of China
- Key-Area Research and Development Program of Shandong Province
- Jiangsu Science and Technology Program
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 405Total Downloads
- Downloads (Last 12 months)405
- Downloads (Last 6 weeks)103
Other Metrics
Citations
View Options
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in