[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3626111.3628184acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article
Open access

Enriching Telepresence with Semantic-driven Holographic Communication

Published: 28 November 2023 Publication History

Abstract

Achieving the optimal balance of minimizing bandwidth consumption and end-to-end latency while preserving a satisfactory level of visual quality becomes the ultimate goal of live, interactive holographic communication, a fundamental building block of immersive telepresence envisioned for 6G. Nevertheless, achieving this ambitious goal poses significant challenges for mobile devices with limited computing power, considering the substantial amount of 3D data to stream, the demanding latency requirements, and the high computation workload involved. Instead of distributing immersive content bit by bit, in this position paper, we propose to deliver semantic information extracted from telepresence participants to drastically reduce Internet bandwidth usage for task-oriented applications such as remote collaboration. We contribute a taxonomy by categorizing related semantics into three different types (i.e., keypoints, 2D images, and text), pinpoint the open research challenges associated with developing a practical system for each category in our comprehensive research agenda, and delve into the potential solutions for overcoming these challenges. The preliminary results from our proof-of-concept implementation that harnesses keypoint-based semantics (partially) validate the feasibility of our research agenda.

References

[1]
Draco 3D Data Compression. https://google.github.io/draco/. [accessed on 24-October-2023].
[2]
Kinect for Windows. https://developer.microsoft.com/en-us/windows/kinect.
[3]
NVIDIA A100 Tensor Core GPU. https://www.nvidia.com/en-us/data-center/a100/. [accessed on 24-October-2023].
[4]
P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas. Learning Representations and Generative Models for 3d Point Clouds. In Proceedings of International Conference on Machine Learning (ICML), 2018.
[5]
L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson. Computer Generated Holograms from Three Dimensional Meshes Using an Analytic Light Transport Model. Applied Optics, 47(10):1567--1574, 2008.
[6]
E. Arabadzhiyska, C. Tursun, H.-P. Seidel, and P. Didyk. Practical Saccade Prediction for Head-Mounted Displays: Towards a Comprehensive Model. ACM Transactions on Applied Perceptions, 20(1):1--23, 2023.
[7]
E. Arabadzhiyska, O. T. Tursun, K. Myszkowski, H.-P. Seidel, and P. Didyk. Saccade Landing Position Prediction for Gaze-contingent Rendering. ACM Transactions on Graphics, 36(4):1--12, 2017.
[8]
B. Attal, J.-B. Huang, C. Richardt, M. Zollhoefer, J. Kopf, M. O'Toole, and C. Kim. HyperReel: High-Fidelity 6-DoF Video with Ray-Conditioned Sampling. In Proceedings of IEEE/CVF CVPR, 2023.
[9]
M. Baldi and Y. Ofek. End-to-end Delay Analysis of Videoconferencing Over Packet-switched Networks. IEEE/ACM Transactions On Networking, 8(4):479--492, 2000.
[10]
R. Bashirov, A. Ianina, K. Iskakov, Y. Kononenko, V. Strizhkova, V. Lempitsky, and A. Vakhitov. Real-time Rgbd-based Extended Body Pose Estimation. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021.
[11]
R. Bergmann, S. Rintel, N. Baym, A. Sarkar, D. Borowiec, P. Wong, and A. Sellen. Meeting (the) Pandemic: Videoconferencing Fatigue and Evolving Tensions of Sociality in Enterprise Video Meetings During COVID-19. Computer Supported Cooperative Work, pages 1--37, 2022.
[12]
A. Burov, M. Nießner, and J. Thies. Dynamic Surface Function Networks for Clothed Human Bodies. In Proceedings of IEEE/CVF ICCV, 2021.
[13]
Y. Cai, L. Ge, J. Liu, J. Cai, T.-J. Cham, J. Yuan, and N. M. Thalmann. ploiting Spatial-temporal Relationships for 3D Pose Estimation via Graph Convolutional Networks. In Proceedings of IEEE/CVF CVPR, 2019.
[14]
Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. In Proceedings of IEEE/CVF CVPR, 2017.
[15]
K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz. MARVEL: Enabling Mobile Augmented Reality with Low Energy and Low Latency. In Proceedings of ACM SenSys, 2018.
[16]
R. H.-Y. Chen and T. D. Wilkinson. Computer Generated Hologram from Point Cloud Using Graphics Processor. Applied Optics, 48(6):6841--6850, 2009.
[17]
S. Chen, H. Zhu, X. Chen, Y. Lei, G. Yu, and T. Chen. End-to-end 3D Dense Captioning with Vote2cap-detr. In Proceedings of IEEE/CVF CVPR, 2023.
[18]
Z. Chen, A. Gholami, M. Nießner, and A. X. Chang. Scan2Cap: Context-aware Dense Captioning in RGB-D Scans. In Proceedings of IEEE/CVF CVPR, 2021.
[19]
H. Choi, G. Moon, and K. M. Lee. Pose2Mesh: Graph Convolutional Network for 3D Human Pose and Mesh Recovery from a 2D Human Pose. In Proceedings of Springer ECCV, 2020.
[20]
P. J. Choi, R. J. Oskouian, and R. S. Tubbs. Telesurgery: Past, Present, and Future. Cureus, 10(5):e2716, 2018.
[21]
A. Clemm, M. T. Vega, H. K. Ravuri, T. Wauters, and F. D. Turck. Toward Truly Immersive Holographic-Type Communication: Challenges and Solutions. IEEE Communications Magazine, 58(1):93--99, 2020.
[22]
A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. High-quality Streamable Free-viewpoint Video. ACM Transactions on Graphics, 34(4):1--13, 2015.
[23]
C. De Alwis, A. Kalla, Q.-V. Pham, P. Kumar, K. Dev, W.-J. Hwang, and M. Liyanage. Survey on 6G Frontiers: Trends, Applications, Requirements, Technologies and Future Research. IEEE Open Journal of the Communications Society, 2:836--886, 2021.
[24]
M. R. Diamond, J. Ross, and M. C. Morrone. Extraretinal Control of Saccadic Suppression. Journal of Neuroscience, 20(9):3449--3455, 2000.
[25]
M. Dou, S. Khamis, Y. Degtyarev, P. Davidson, S. R. Fanello, A. Kowdle, S. O. Escolano, C. Rhemann, D. Kim, J. Taylor, et al. Fusion4D: Real-time Performance Capture of Challenging Scenes. ACM Transactions on Graphics, 35(4):1--13, 2016.
[26]
R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume Rendering. ACM Siggraph Computer Graphics, 22(4):65--74, 1988.
[27]
R. Du, S. Bista, and A. Varshney. Video Fields: Fusing Multiple Surveillance Videos into a Dynamic Virtual Environment. In Proceedings of International Conference on Web3D Technology, 2016.
[28]
R. Du, M. Chuang, W. Chang, H. Hoppe, and A. Varshney. Montage4D: Real-time Seamless Fusion and Stylization of Multiview Video Textures. Journal of Computer Graphics Techniques, 1(15):1--34, 2019.
[29]
E. Dupont, H. Kim, S. A. Eslami, D. J. Rezende, and D. Rosenbaum. From Data to Functa: Your Data Point is a Function and You Can Treat it Like One. In Proceedings of International Conference on Machine Learning (ICML), 2022.
[30]
C. Geng, S. Peng, Z. Xu, H. Bao, and X. Zhou. Learning Neural Volumetric Representations of Dynamic Humans in Minutes. In Proceedings of IEEE/CVF CVPR, 2023.
[31]
T. Golla and R. Klein. Real-time Point Cloud Compression. In Proceedings of International Conference on Intelligent Robots and Systems, 2015.
[32]
Y. Guan, X. Hou, N. Wu, B. Han, and T. Han. MetaStream: Live Volumetric Content Capture, Creation, Delivery, and Rendering in Real Time. In Proceedings of ACM MobiCom, 2023.
[33]
B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. Foveated 3D graphics. ACM Transactions on Graphics, 31(6):1--10, 2012.
[34]
S. Gül, D. Podborski, T. Buchholz, T. Schierl, and C. Hellge. Low-latency Cloud-based Volumetric Video Streaming Using Head Motion Prediction. In Proceedings of ACM Workshop on Network and Operating Systems Support for Digital Audio and Video, 2020.
[35]
S. Gül, D. Podborski, J. Son, G. S. Bhullar, T. Buchholz, T. Schierl, and C. Hellge. Cloud Rendering-based Volumetric Video Streaming System for Mixed Reality Services. In Proceedings of ACM MMSys, 2020.
[36]
D. Gündüz, Z. Qin, I. E. Aguerri, H. S. Dhillon, Z. Yang, A. Yener, K. K. Wong, and C.-B. Chae. Beyond Transmitting Bits: Context, Semantics, and Task-Oriented Communications. IEEE Journal on Selected Areas in Communications, 41(1):5--41, 2022.
[37]
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew. Deep Learning for Visual Understanding: A Review. Neurocomputing, 187:27--48, 2016.
[38]
A. Gupta, A. Bansal, and V. Khanduja. Modern Lossless Compression Techniques: Review, Comparison and Analysis. In Proceedings of IEEE International Conference on Electrical, Computer and Communication Technologies, 2017.
[39]
B. Han, Y. Liu, and F. Qian. ViVo: Visibility-Aware Mobile Volumetric Video Streaming. In Proceedings of ACM MobiCom, 2020.
[40]
Z. Hu, S. Li, C. Zhang, K. Yi, G. Wang, and D. Manocha. DGaze: CNN-Based Gaze Prediction in Dynamic Scenes. IEEE Transactions on Visualization and Computer Graphics, 26(5):1902--1911, 2020.
[41]
E. Hubo, T. Mertens, T. Haber, and P. Bekaert. The Quantized kd-Tree: Efficient Ray Tracing of Compressed Point Clouds. In Proceedings of IEEE Symposium on Interactive Ray Tracing, 2006.
[42]
H. Iqbal, A. Khalid, and M. Shahzad. Dissecting Cloud Gaming Performance with DECAF. In Proceedings of ACM on Measurement and Analysis of Computing Systems (SIGMETRICS), 2021.
[43]
J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of ACM CoNEXT, 2012.
[44]
H. Joo, T. Simon, and Y. Sheikh. Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies. In Proceedings of IEEE/CVF CVPR, 2018.
[45]
H. Jun and A. Nichol. Shap-E: Generating Conditional 3D Implicit Functions. https://arxiv.org/abs/2305.02463, 2023. [accessed on 24-October-2023].
[46]
N. Kolotouros, G. Pavlakos, and K. Daniilidis. Convolutional Mesh Regression for Single-image Human Shape Reconstruction. In Proceedings of IEEE/CVF CVPR, 2019.
[47]
K. Lee, J. Yi, and Y. Lee. FarfetchFusion: Towards Fully Mobile Live 3D Telepresence Platform. In Proceedings of ACM MobiCom, 2023.
[48]
K. Lee, J. Yi, Y. Lee, S. Choi, and Y. M. Kim. GROOT: A Real-Time Streaming System of High-Fidelity Volumetric Videos. In Proceedings of ACM MobiCom, 2020.
[49]
M. Lee, W. Park, S. Lee, and S. Lee. Distracting Moments in Videoconferencing: A Look Back at the Pandemic Period. In Proceedings of ACM Conference on Human Factors in Computing Systems (CHI), 2022.
[50]
C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang. Dynamic Slimmable Network. In In Proceedings of IEEE/CVF CVPR, 2021.
[51]
C. Li, C. Zhang, A. Waghwase, L.-H. Lee, F. Rameau, Y. Yang, S.-H. Bae, and C. S. Hong. Generative AI meets 3D: A Survey on Text-to-3D in AIGC Era. https://arxiv.org/abs/2305.06131, 2023. [accessed on 24-October-2023].
[52]
T. Li and X. Zhou. Battery-Free Eye Tracker on Glasses. In Proceedings of ACM MobiCom, 2018.
[53]
Z. Li, E. Wallace, S. Shen, K. Lin, K. Keutzer, D. Klein, and J. Gonzalez. Train Large, Then Compress: Rethinking Model Size for Efficient Training and Inference of Transformers. In Proceedings of International Conference on Machine Learning (ICML), 2020.
[54]
J.-M. Lien, G. Kurillo, and R. Bajcsy. Multi-camera Tele-immersion System with Real-time Model Driven Data Compression. The Visual Computer, 26(3):3--15, 2010.
[55]
Y. Lin, Z. Gao, H. Du, D. Niyato, J. Kang, A. Jamalipour, and X. S. Shen. A Unified Framework for Integrating Semantic Communication and AI-Generated Content in Metaverse. https://arxiv.org/abs/2305.11911, 2023. [accessed on 24-October-2023].
[56]
K. Liu, R. Cheng, N. Wu, and B. Han. Toward Next-generation Volumetric Video Streaming with Neural-based Content Representations. In Proceedings of ACM Workshop on Mobile Immersive Computing, Networking, and Systems (ImmerCom 2023), 2023.
[57]
Y. Liu, B. Han, F. Qian, A. Narayanan, and Z.-L. Zhang. Vues: Practical Volumetric Video Streaming through Multiview Transcoding. In Proceedings of ACM MobiCom, 2022.
[58]
X. Luo, H.-H. Chen, and Q. Guo. Semantic Communications: Overview, Open Issues, and Future Research Directions. IEEE Wireless Communcatons, 29(1):210--219, 2022.
[59]
K. MacMillan, T. Mangla, J. Saxon, and N. Feamster. Measuring the Performance and Network Utilization of Popular Video Conferencing Applications. In Proceedings of ACM IMC, 2021.
[60]
A. Maglo, G. Lavoué, F. Dupont, and C. Hudelot. 3D Mesh Compression: Survey, Comparisons, and Emerging Trends. ACM Computing Surveys, 47(3), 2015.
[61]
H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with Pensieve. In Proceedings of ACM SIGCOMM, 2017.
[62]
R. Martin-Brualla, N. Radwan, M. S. Sajjadi, J. T. Barron, A. Dosovitskiy, and D. Duckworth. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. In Proceedings of IEEE/CVF CVPR, 2021.
[63]
R. McAfee, C. Haxton, M. Harrison, and J. Gess. Thermal Characterization of a Virtual Reality Headset during Transient and Resting Operation. In Proceedings of Semiconductor Thermal Measurement, Modeling & Management Symposium (SEMI-THERM), 2020.
[64]
G. Metzer, E. Richardson, O. Patashnik, R. Giryes, and D. Cohen-Or. Latent-NeRF for Shape-guided Generation of 3D Shapes and Textures. In Proceedings of IEEE/CVF CVPR, 2023.
[65]
B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Communications of the ACM, 65(1):99--106, 2021.
[66]
G. Moon, H. Choi, and K. M. Lee. Accurate 3D Hand Pose Estimation for Whole-Body 3D Human Mesh Estimation. In Proceedings of IEEE/CVF CVPR, 2022.
[67]
G. Moon and K. M. Lee. I2L-MeshNet: Image-to-Lixel Prediction Network for Accurate 3D Human Pose and Mesh Estimation from a Single RGB Image. In Proceedings of Springer ECCV, 2020.
[68]
A. Morales, F. M. Costela, and R. L. Woods. Saccade Landing Point Prediction Based on Fine-Grained Learning Method. IEEE Access, 9:52474--52484, 2021.
[69]
T. Neate, V. Kladouchou, S. Wilson, and S. Shams. "Just Not Together": The Experience of Videoconferencing for People with Aphasia during the Covid-19 Pandemic. In Proceedings of ACM Conference on Human Factors in Computing Systems (CHI), 2022.
[70]
A. Nichol, H. Jun, P. Dhariwal, P. Mishkin, and M. Chen. Point-E: A System for Generating 3D Point Clouds from Complex Prompts. https://arxiv.org/abs/2212.08751, 2022. [accessed on 24-October-2023].
[71]
A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. Mcgrew, I. Sutskever, and M. Chen. GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models. In Proceddings of International Conference on Machine Learning (ICML), 2022.
[72]
J. Nystad, A. Lassen, A. Pomianowski, S. Ellis, and T. Olson. Adaptive Scalable Texture Compression. In Proceedings of ACM SIGGRAPH/Eurographics Conference on High-Performance Graphics, 2012.
[73]
S. Orts-Escolano, C. Rhemann, S. Fanello, W. Chang, A. Kowdle, Y. Degtyarev, D. Kim, P. Davidson, S. Khamis, M. Dou, V. Tankovich, C. Loop, Q. Cai, P. Chou, S. Mennicken, J. Valentin, V. Pradeep, S. Wang, S. B. Kang, P. Kohli, Y. Lutchyn, C. Keskin, and S. Izadi. Holoportation: Virtual 3D Teleportation in Real-time. In Proceedings of ACM Symposium on User Interface Software and Technology (UIST), 2016.
[74]
G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. Osman, D. Tzionas, and M. J. Black. Expressive Body Capture: 3D Hands, Face, and Body from a Single Image. In Proceedings of IEEE/CVF CVPR, 2019.
[75]
D. Pavllo, C. Feichtenhofer, D. Grangier, and M. Auli. 3D Human Pose Estimation in Video with Temporal Convolutions and Semi-supervised Training. In Proceedings of IEEE/CVF CVPR, 2019.
[76]
S. Peng, Y. Yan, Q. Shuai, H. Bao, and X. Zhou. Representing Volumetric Videos as Dynamic MLP Maps. In Proceedings of IEEE/CVF CVPR, 2023.
[77]
S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou. Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. In Proceedings of IEEE/CVF CVPR, 2021.
[78]
B. Poole, A. Jain, J. T. Barron, and B. Mildenhall. Dreamfusion: Text-to-3d Using 2d Diffusion. https://arxiv.org/abs/2304.12932, 2022. [accessed on 24-October-2023].
[79]
C. R. Qi, L. Yi, H. Su, and L. J. Guibas. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. In Proceedings of Conference on Neural Information Processing Systems, 2017.
[80]
F. Qian, B. Han, J. Pair, and V. Gopalakrishnan. Toward Practical Volumetric Video Streaming On Commodity Smartphones. In Proceedings of ACM HotMobile, 2019.
[81]
S. Raghuraman, K. Venkatraman, Z. Wang, B. Prabhakaran, and X. Guo. A 3D Tele-immersion Streaming Approach Using Skeleton-based prediction. In Proceedings of ACM International Conference on Multimedia, 2013.
[82]
A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell. Progressive Neural Networks. https://arxiv.org/abs/1606.04671, 2016. [accessed on 24-October-2023].
[83]
K. Shen, C. Guo, M. Kaufmann, J. J. Zarate, J. Valentin, J. Song, and O. Hilliges. X-avatar: Expressive Human Avatars. In Proceedings of IEEE/CVF CVPR, 2023.
[84]
G. Shi, Y. Xiao, Y. Li, and X. Xie. From Semantic Communication to Semantic-Aware Networking: Model, Architecture, and Open Problems. IEEE Communications Magazine, 59(8):44--50, 2021.
[85]
L. Sigal. Human Pose Estimation. In Computer Vision: A Reference Guide, pages 573--592. 2021.
[86]
L. Song, A. Chen, Z. Li, Z. Chen, L. Chen, J. Yuan, Y. Xu, and A. Geiger. NeRFPlayer: A Streamable Dynamic Scene Representation with Decomposed Neural Radiance Fields. IEEE Transactions on Visualization and Computer Graphics, 29(5):2732--2742, 2023.
[87]
E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau, L. Maret, and C. Dehos. 6G: The Next Frontier: From Holographic Messaging to Artificial Intelligence Using Subterahertz and Visible Light Communication. IEEE Vehicular Technology Magazine, 14(3):42--50, 2019.
[88]
K. Sun, B. Xiao, D. Liu, and J. Wang. Deep High-resolution Representation Learning for Human Pose Estimation. In Proceedings of IEEE/CVF CVPR, 2019.
[89]
F. Tariq, M. R. A. Khandaker, K.-K. Wong, M. A. Imran, M. Bennis, and M. Debbah. A Speculative Study on 6G. IEEE Wireless Communications, 27(4):118--125, 2020.
[90]
B. Thoravi Kumaravel, F. Anderson, G. Fitzmaurice, B. Hartmann, and T. Grossman. Loki: Facilitating Remote Instruction of Physical Tasks Using Bi-Directional Mixed-Reality Telepresence. In Proceedings of ACM Symposium on User Interface Software and Technology (UIST), 2019.
[91]
A. Toshev and C. Szegedy. Deeppose: Human Pose Estimation via Deep Neural Networks. In Proceedings of IEEE/CVF CVPR, 2014.
[92]
M. Wang and W. Deng. Deep Face Recognition: A Survey. Neurocomputing, 429:215--244, 2021.
[93]
C.-Y. Weng, B. Curless, P. P. Srinivasan, J. T. Barron, and I. Kemelmacher-Shlizerman. HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video. In Proceedings of IEEE/CVF CVPR, 2022.
[94]
H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang. Deep Learning Enabled Semantic Communication Systems. IEEE Transactions on Signal Processing, 69:2663--2675, 2021.
[95]
H. Xie, Z. Qin, X. Tao, and K. B. Letaief. Task-Oriented Multi-user Semantic Communications. IEEE Journal on Selected Areas in Communications, 40(9):2584--2597, 2022.
[96]
H. Xue, Y. Ju, C. Miao, Y. Wang, S. Wang, A. Zhang, and L. Su. mmMesh: Towards 3D Real-Time Dynamic Human Mesh Construction Using Millimeter-Wave. In Proceedings of ACM MobiSys, 2021.
[97]
G.-W. Yang, W.-Y. Zhou, H.-Y. Peng, D. Liang, T.-J. Mu, and S.-M. Hu. Recursive-NeRF: An Efficient and Dynamically Growing NeRF. IEEE Transactions on Visualization and Computer Graphics, 2022.
[98]
A. Yu, V. Ye, M. Tancik, and A. Kanazawa. pixelNeRF: Neural Radiance Fields from One or Few Images. In Proceedings of IEEE/CVF CVPR, 2021.
[99]
T. Yu, Z. Zheng, K. Guo, P. Liu, Q. Dai, and Y. Liu. Function4D: Real-time Human Volumetric Capture from Very Sparse Consumer RGBD Sensors. In Proceedings of IEEE/CVF CVPR, 2021.
[100]
Z. Yu, J. Wang, J. Xu, B. Ni, C. Zhao, M. Wang, and W. Zhang. Skeleton2Mesh: Kinematics Prior Injected Unsupervised Human Mesh Recovery. In Proceedings of IEEE/CVF CVPR, 2021.
[101]
Z. Yuan, X. Yan, Y. Liao, Y. Guo, G. Li, S. Cui, and Z. Li. X-trans2cap: Cross-modal Knowledge Transfer Using Transformer for 3D Dense Captioning. In Proceedings of IEEE/CVF CVPR, 2022.
[102]
A. Zhang, C. Wang, B. Han, and F. Qian. Efficient Volumetric Video Streaming Through Super Resolution. In Proceedings of ACM HotMobile, 2021.
[103]
A. Zhang, C. Wang, B. Han, and F. Qian. YuZu: Neural-enhanced Volumetric Video Streaming. In Proceedings of USENIX NSDI, 2022.
[104]
B. Zhang, Z. Qin, Y. Guo, and G. Y. Li. Semantic Sensing and Communications for Ultimate Extended Reality. https://arxiv.org/abs/2212.08533, 2022. [accessed on 24-October-2023].
[105]
D. Zhang, B. Han, P. Pathak, and H. Wang. Innovating Multi-user Volumetric Video Streaming through Cross-layer Design. In Proceedings of ACM HotNets, 2021.
[106]
D. Zhang, P. Zhou, B. Han, and P. Pathak. M5: Facilitating Multi-User Volumetric Content Delivery with Multi-Lobe Multicast over mmWave. In Proceedings of ACM SenSys, 2022.
[107]
Y. Zhu, Y. Huang, X. Qiao, Z. Tan, B. Bai, H. Ma, and S. Dustdar. A Semantic-aware Transmission with Adaptive Control Scheme for Volumetric Video Service. IEEE Transactions on Multimedia, 2022.

Cited By

View all
  • (2024)Towards Network-friendly and Privacy-preserving Immersive ComputingProceedings of the CoNEXT on Student Workshop 202410.1145/3694812.3699920(3-4)Online publication date: 9-Dec-2024
  • (2024)A First Look at Immersive Telepresence on Apple Vision ProProceedings of the 2024 ACM on Internet Measurement Conference10.1145/3646547.3689006(555-562)Online publication date: 4-Nov-2024
  • (2024)Theia: Gaze-driven and Perception-aware Volumetric Content Delivery for Mixed Reality HeadsetsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661858(70-84)Online publication date: 3-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
HotNets '23: Proceedings of the 22nd ACM Workshop on Hot Topics in Networks
November 2023
306 pages
ISBN:9798400704154
DOI:10.1145/3626111
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 28 November 2023

Check for updates

Author Tags

  1. Immersive Telepresence
  2. Semantic Communication

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Conference

HotNets '23
Sponsor:
HotNets '23: The 22nd ACM Workshop on Hot Topics in Networks
November 28 - 29, 2023
MA, Cambridge, USA

Acceptance Rates

Overall Acceptance Rate 110 of 460 submissions, 24%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)639
  • Downloads (Last 6 weeks)66
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Towards Network-friendly and Privacy-preserving Immersive ComputingProceedings of the CoNEXT on Student Workshop 202410.1145/3694812.3699920(3-4)Online publication date: 9-Dec-2024
  • (2024)A First Look at Immersive Telepresence on Apple Vision ProProceedings of the 2024 ACM on Internet Measurement Conference10.1145/3646547.3689006(555-562)Online publication date: 4-Nov-2024
  • (2024)Theia: Gaze-driven and Perception-aware Volumetric Content Delivery for Mixed Reality HeadsetsProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661858(70-84)Online publication date: 3-Jun-2024
  • (2024)Embracing Radiance Field Rendering in 6G: Over-the-Air Training and Inference With 3-D ContentsIEEE Open Journal of the Communications Society10.1109/OJCOMS.2024.34254895(4275-4292)Online publication date: 2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media