[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3605098.3636034acmconferencesArticle/Chapter ViewAbstractPublication PagessacConference Proceedingsconference-collections
research-article
Open access

An evolutionary triclustering approach to discover electricity consumption patterns in France

Published: 21 May 2024 Publication History

Abstract

Electricity consumption patterns are critical in shaping energy policies and optimizing resource allocation. In pursuing a more sustainable and efficient energy future, uncovering hidden consumption patterns is paramount. This paper introduces an innovative approach, leveraging evolutionary triclustering techniques, to unveil previously undisclosed electricity consumption patterns in France. By harnessing the power of triclustering algorithms, this research provides a comprehensive analysis of electricity usage across various dimensions, shedding light on intricate relationships among variables. Using this novel method, the study reveals concealed patterns and offers insights that can inform decision-makers and stakeholders in the energy sector. The findings contribute to a better understanding of electricity consumption dynamics, aiding in developing more targeted and effective energy management strategies. This research represents a significant step forward in the quest for sustainable energy solutions and underscores the potential of evolutionary triclustering as a valuable tool in uncovering complex consumption patterns.

References

[1]
J. L. Amaro-Mellado, L. Melgar-García, C. Rubio-Escudero, and D. Gutiérrez-Avilés. 2021. Generating a seismogenic source zone model for the Pyrenees: A GIS-assisted triclustering approach. Computers & Geosciences 150 (5 2021), 104736.
[2]
B. S. Biswal, A. Mohapatra, and S. Vipsita. 2020. Triclustering of gene expression microarray data using coarse grained and dynamic deme based parallel genetic approach. Evolutionary Intelligence 13 (2020), 475--495.
[3]
B. S. Biswal, S. Patra, A. Mohapatra, and S. Vipsita. 2020. TriRNSC: triclustering of gene expression microarray data using restricted neighbourhood search. IET Systems Biology 14 (2020), 323--333.
[4]
D. Gutiérrez-Avilés, R. Giráldez, F. J. Gil-Cumbreras, and C. Rubio-Escudero. 2018. TRIQ: a new method to evaluate triclusters. BioData Mining 11, 1 (2018), 15.
[5]
D. Gutiérrez-Avilés and C. Rubio-Escudero. 2014. LSL: A new measure to evaluate triclusters. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 30--37.
[6]
D. Gutiérrez-Avilés and C. Rubio-Escudero. 2014. Mining 3D Patterns from Gene Expression Temporal Data: A New Tricluster Evaluation Measure. The Scientific World Journal 2014 (2014), 1--16.
[7]
D. Gutiérrez-Avilés and C. Rubio-Escudero. 2015. MSL: A Measure to Evaluate Three-dimensional Patterns in Gene Expression Data. Evolutionary Bioinformatics 11 (1 2015), EBO.S25822.
[8]
D. Gutiérrez-Avilés, C. Rubio-Escudero, F. Martínez-Álvarez, and J.C. Riquelme. 2014. TriGen: A genetic algorithm to mine triclusters in temporal gene expression data. Neurocomputing 132 (2014), 42--53.
[9]
R. Henriques and S.C. Madeira. 2018. Triclustering algorithms for three-dimensional data analysis: A comprehensive survey. Comput. Surveys 51, 5 (2018), 1--43.
[10]
Z. Hu and R. Bhatnagar. 2010. Algorithm for Discovering Low-Variance 3-Clusters from Real-Valued Datasets. In Proceedings of the IEEE International Conference on Data Mining. 236--245.
[11]
J. Liu, Z. Li, X. Hu, and Y. Chen. 2008. Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data. In Proceedings of the IEEE International Conference on Granular Computing. 442--447.
[12]
Haoliang Jiang, Shuigeng Zhou, Jihong Guan, and Ying" Zheng. 2006. gTRI-CLUSTER: A More General and Effective 3D Clustering Algorithm for Gene-Sample-Time Microarray Data. In Proceedings of the Data Mining for Biomedical Applications. 48--59.
[13]
T. Kakati, H. A. Ahmed, D. K. Bhattacharyya, and J. K. Kalita. 2018. THD-Tricluster: A robust triclustering technique and its application in condition specific change analysis in HIV-1 progression data. Computational Biology and Chemistry 75 (2018), 154--167.
[14]
Z. Li, X. Hu, and Y. Chen. 2008. Multi-objective evolutionary algorithm for mining 3D clusters in gene-sample-time microarray data. In Proceedings of the IEEE International Conference on Granular Computing. 442--447.
[15]
Y. C. Liu, C. H. Lee, W. C. Chen, J. W. Shin, H. H. Hsu, and V. S. Tseng. 2010. A novel method for mining temporally dependent association rules in three-dimensional microarray datasets. In Proceedings of the IEEE International Computer Symposium. 759--764.
[16]
Yu-Cheng Liu, Chao-Hui Lee, Wei-Chung Chen, J. W. Shin, Hui-Huang Hsu, and Vincent S. Tseng. 2010. A novel method for mining temporally dependent association rules in three-dimensional microarray datasets. In 2010 International Computer Symposium (ICS2010). 759--764.
[17]
F. Martínez-Álvarez, D. Gutiérrez-Avilés, A. Morales-Esteban, J. Reyes, J.L. Amaro-Mellado, and C. Rubio-Escudero. 2015. A novel method for seismogenic zoning based on triclustering: Application to the Iberian Peninsula. Entropy 17 (2015), 5000--5021. Issue 7.
[18]
L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso. 2020. High-Content Screening Images Streaming Analysis Using the STriGen Methodology. In Proceedings of the ACM Symposium on Applied Computing (SAC '20). Association for Computing Machinery, 537--539.
[19]
L. Melgar-García, D. Gutiérrez-Avilés, C. Rubio-Escudero, and A. Troncoso. 2021. Discovering three-dimensional patterns in real-time from data streams: An online triclustering approach. Information Sciences 558 (5 2021), 174--193.
[20]
L. Melgar-García, D. Gutiérrez-Avilés, M. T. Godinho, R. Espada, I. S. Brito, F. Martínez-Álvarez, A. Troncoso, and C. Rubio-Escudero. 2021. Discovering spatio-temporal patterns in precision agriculture based on triclustering. In Proceedings of the International Conference on Soft Computing Models in Industrial and Environmental Applications. 226--236.
[21]
L. Melgar-García, D. Gutiérrez-Avilés, M. T. Godinho, R. Espada, I. S. Brito, F. Martínez-Álvarez, A. Troncoso, and C. Rubio-Escudero. 2022. A new big data triclustering approach for extracting three-dimensional patterns in precision agriculture. Neurocomputing 500 (8 2022), 268--278.
[22]
K. C. Mondal, M. Ghosh, R. Fajriyah, and A. Roy. in press. Introducing suffix forest for mining tri-clusters from time-series data. Innovations in Systems and Software Engineering (in press).
[23]
K. Sim and Z. Aung. 2010. Discovering Correlated Subspace Clusters in 3D Continuous-Valued Data. In Proceedings of the IEEE International Conference on Data Mining. 471--480.
[24]
T. Siswantining, A. Bustamam, D. Sarwinda, S. M. Soemartojo, M. A. Latief, E. A. Octaria, A. T. M. Siregar, O. Septa, H. S. Al-Ash, and N. Saputra. 2022. Triclustering method for finding biomarkers in human immunodeficiency virus-1 gene expression data. Mathematical Biosciences and Engineering 19 (2022), 6743--6763.
[25]
P. Swathypriyadharsini and K. Premalatha. 2019. Comparison of cuckoo search and particle swarm optimisation in triclustering temporal gene expression data. International Journal of Swarm Intelligence 4 (2019), 55--72.
[26]
P. Swathypriyadharsini and K. Premalatha. 2022. Hybrid Cuckoo Search with Clonal Selection for Triclustering Gene Expression Data of Breast Cancer. IETE Journal of Research 69 (2022), 2328--2336.
[27]
Alain Tchagang, Sieu Phan, Fazel Famili, Heather Shearer, Pierre Fobert, Yi Huang, Jitao Zou, Daiqing Huang, Adrian Cutler, Ziying Liu, and Youlian Pan. 2012. Mining biological information from 3D short time-series gene expression data: The OPTricluster algorithm. BMC bioinformatics 13 (04 2012), 54.
[28]
X. Xu, Y. Lu, K. L. Tan, and A. Tung. 2009. Finding Time-Lagged 3D Clusters. In Proceedings of the IEEE International Conference on Data Engineering. 445--456.
[29]
Xin Xu, Ying Lu, Kian-Lee Tan, and Anthony K. H. Tung. 2009. Finding Time-Lagged 3D Clusters. In 2009 IEEE 25th International Conference on Data Engineering. 445--456.
[30]
Y. Yin, Y. Zhao, B. Zhang, and G. Wang. 2007. Mining Time-Shifting Co-regulation Patterns from Gene Expression Data. Lecture Notes in Computer Science 4505 (2007), 62--73.
[31]
Lizhuang Zhao and Mohammed J Zaki. 2005. triCluster: an effective algorithm for mining coherent clusters in 3D microarray data. In Proceedings of the ACM SIGMOD International Conference on Management of data. 694--705.

Index Terms

  1. An evolutionary triclustering approach to discover electricity consumption patterns in France

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SAC '24: Proceedings of the 39th ACM/SIGAPP Symposium on Applied Computing
    April 2024
    1898 pages
    ISBN:9798400702433
    DOI:10.1145/3605098
    This work is licensed under a Creative Commons Attribution International 4.0 License.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 May 2024

    Check for updates

    Author Tags

    1. time series
    2. triclustering
    3. evolutionary algorithm
    4. electricity consumption
    5. patterns

    Qualifiers

    • Research-article

    Conference

    SAC '24
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,650 of 6,669 submissions, 25%

    Upcoming Conference

    SAC '25
    The 40th ACM/SIGAPP Symposium on Applied Computing
    March 31 - April 4, 2025
    Catania , Italy

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • 0
      Total Citations
    • 95
      Total Downloads
    • Downloads (Last 12 months)95
    • Downloads (Last 6 weeks)23
    Reflects downloads up to 31 Dec 2024

    Other Metrics

    Citations

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media