[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3519935.3519962acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

An area law for 2d frustration-free spin systems

Published: 10 June 2022 Publication History

Abstract

We prove that the entanglement entropy of the ground state of a locally gapped frustration-free 2D lattice spin system satisfies an area law with respect to a vertical bipartition of the lattice into left and right regions. We first establish that the ground state projector of any locally gapped frustration-free 1D spin system can be approximated to within error є by a degree O(√nlog(є−1)) multivariate polynomial in the interaction terms of the Hamiltonian. This generalizes the optimal bound on the approximate degree of the boolean AND function, which corresponds to the special case of commuting Hamiltonian terms. For 2D spin systems we then construct an approximate ground state projector (AGSP) that employs the optimal 1D approximation in the vicinity of the boundary of the bipartition of interest. This AGSP has sufficiently low entanglement and error to establish the area law using a known technique.

References

[1]
Nilin Abrahamsen. 2020. Sharp implications of AGSPs for degenerate ground spaces. arXiv:2003.08406 (2020).
[2]
Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh Vazirani. 2009. The Detectability Lemma and Quantum Gap Amplification. In Proc. of STOC ’09. ACM, New York, NY, USA. 417–426. isbn:978-1-60558-506-2 https://doi.org/10.1145/1536414.1536472
[3]
Dorit Aharonov, Aram W Harrow, Zeph Landau, Daniel Nagaj, Mario Szegedy, and Umesh Vazirani. 2014. Local tests of global entanglement and a counterexample to the generalized area law. In Proc. of FOCS ’14. 246–255.
[4]
Anurag Anshu, Itai Arad, and David Gosset. 2020. Entanglement Subvolume Law for 2D Frustration-Free Spin Systems. In Proc. of STOC ’20. ACM, New York, NY, USA. 868–874. isbn:9781450369794 https://doi.org/10.1145/3357713.3384292
[5]
Anurag Anshu, Itai Arad, and David Gosset. 2021. An area law for 2D frustration-free spin systems. arXiv:2103.02492 (2021).
[6]
Anurag Anshu, Itai Arad, and Thomas Vidick. 2016. Simple proof of the detectability lemma and spectral gap amplification. Phys. Rev. B, 93 (2016), 205142. https://doi.org/10.1103/PhysRevB.93.205142
[7]
Anurag Anshu, Aram W. Harrow, and Mehdi Soleimanifar. 2020. From communication complexity to an entanglement spread area law in the ground state of gapped local Hamiltonians. arXiv:2004.15009 (2020).
[8]
Itai Arad, Alexei Kitaev, Zeph Landau, and Umesh Vazirani. 2013. An area law and sub-exponential algorithm for 1D systems. arXiv: 1301.1162 (2013).
[9]
Itai Arad, Zeph Landau, and Umesh Vazirani. 2012. An improved 1D area law for frustration-free systems. Phys. Rev. B., 85 (2012).
[10]
Itai Arad, Zeph Landau, Umesh Vazirani, and Thomas Vidick. 2017. Rigorous RG algorithms and area laws for low energy eigenstates in 1D. Commun. Math. Phys., 356, 1 (2017), 65–105. issn:1432-0916 https://doi.org/10.1007/s00220-017-2973-z
[11]
Sven Bachmann, Eman Hamza, Bruno Nachtergaele, and Amanda Young. 2015. Product Vacua and Boundary State Models in d-Dimensions. Journal of Statistical Physics, 160, 3 (2015), 636–658.
[12]
Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf. 2001. Quantum lower bounds by polynomials. Journal of the ACM (JACM), 48, 4 (2001), 778–797.
[13]
Fernando G. S. L. Brandão and Marcus Cramer. 2015. Entanglement area law from specific heat capacity. Phys. Rev. B, 92 (2015), Sep, 115134. https://doi.org/10.1103/PhysRevB.92.115134
[14]
Fernando G. S. L. Brandão and Michal Horodecki. 2013. An area law for entanglement from exponential decay of correlations. Nat Phys., 9 (2013), 721–726. https://doi.org/10.1038/nphys2747
[15]
Sergey Bravyi. 2011. Efficient algorithm for a quantum analogue of 2-SAT. Contemp. Math., 536 (2011), 33–48.
[16]
H. Buhrman, R. Cleve, R. De Wolf, and C. Zalka. 1999. Bounds for small-error and zero-error quantum algorithms. In Proc. of FOCS 99’. 358–368.
[17]
Jaeyoon Cho. 2014. Sufficient Condition for Entanglement Area Laws in Thermodynamically Gapped Spin Systems. Phys. Rev. Lett., 113 (2014), Nov, 197204. https://doi.org/10.1103/PhysRevLett.113.197204
[18]
Niel de Beaudrap, Tobias J Osborne, and Jens Eisert. 2010. Ground states of unfrustrated spin Hamiltonians satisfy an area law. New Journal of Physics, 12, 9 (2010), 095007. https://doi.org/10.1088/1367-2630/12/9/095007
[19]
Ronald de Wolf. 2008. A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions. arXiv:0802.1816 (2008).
[20]
J Eisert, MB Plenio, and M Cramer. 2008. Area laws for the entanglement entropy-a review. Rev. Mod. Phys., 82 (2008), 277–306.
[21]
Yimin Ge and Jens Eisert. 2016. Area laws and efficient descriptions of quantum many-body states. New Journal of Physics, 18, 8 (2016), 083026. https://doi.org/10.1088/1367-2630/18/8/083026
[22]
Lov K Grover. 1996. A fast quantum mechanical algorithm for database search. In Proc. of STOC ’96. 212–219.
[23]
M B Hastings. 2004. Lieb-Schultz-Mattis in Higher Dimensions. Phys. Rev. B, 69, 104431 (2004), arxiv:http://arxiv.org/abs/cond-mat/0305505. http://dx.doi.org/10.1103/PhysRevB.69.104431
[24]
M. B. Hastings. 2007. An Area Law for One Dimensional Quantum Systems. J. Stat. Mech., P08024 (2007).
[25]
M. B. Hastings. 2007. Entropy and entanglement in quantum ground states. Phys. Rev. B, 76 (2007), 035114. https://doi.org/10.1103/PhysRevB.76.035114
[26]
Patrick Hayden and John Preskill. 2007. Black holes as mirrors: quantum information in random subsystems. Journal of High Energy Physics, 2007, 09 (2007), 120. https://doi.org/10.1088/1126-6708/2007/09/120
[27]
Jeff Kahn, Nathan Linial, and Alex Samorodnitsky. 1996. Inclusion-exclusion: Exact and approximate. Combinatorica, 16, 4 (1996), 465–477. issn:1439-6912 https://doi.org/10.1007/BF01271266
[28]
Alexei Kitaev and John Preskill. 2006. Topological Entanglement Entropy. Phys. Rev. Lett., 96 (2006), 110404. https://doi.org/10.1103/PhysRevLett.96.110404
[29]
Tomotaka Kuwahara and Keiji Saito. 2020. Area law of noncritical ground states in 1D long-range interacting systems. Nature Communications, 11, 1 (2020), 08 Sep, 4478. issn:2041-1723 https://doi.org/10.1038/s41467-020-18055-x
[30]
Zeph Landau, Umesh Vazirani, and Thomas Vidick. 2015. A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nat Phys., 11 (2015), https://doi.org/10.1038/nphys3345
[31]
Nathan Linial and Noam Nisan. 1990. Approximate inclusion-exclusion. Combinatorica, 10, 4 (1990), 349–365.
[32]
Lluís Masanes. 2009. Area law for the entropy of low-energy states. Phys. Rev. A, 80 (2009), 052104. https://doi.org/10.1103/PhysRevA.80.052104
[33]
Sushant Sachdeva and Nisheeth K. Vishnoi. 2014. Faster Algorithms via Approximation Theory. Foundations and Trends® in Theoretical Computer Science, 9, 2 (2014), 125–210. issn:1551-305X https://doi.org/10.1561/0400000065
[34]
Alexander A. Sherstov. 2012. Making Polynomials Robust to Noise. In Proc. of STOC ’12. ACM, New York, NY, USA. 747–758. isbn:978-1-4503-1245-5 https://doi.org/10.1145/2213977.2214044
[35]
Frank Verstraete, Valentin Murg, and J Ignacio Cirac. 2008. Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Advances in Physics, 57, 2 (2008), 143–224.
[36]
Guifre Vidal. 2003. Efficient Classical Simulation of Slightly Entangled Quantum Computations. Phys. Rev. Lett., 91 (2003), 147902. https://doi.org/10.1103/PhysRevLett.91.147902
[37]
Steven R. White. 1993. Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B, 48 (1993), 10345–10356. https://doi.org/10.1103/PhysRevB.48.10345

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
June 2022
1698 pages
ISBN:9781450392648
DOI:10.1145/3519935
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 10 June 2022

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Entanglement entropy
  2. Ground states
  3. Local Hamiltonian
  4. Robust polynomials

Qualifiers

  • Research-article

Conference

STOC '22
Sponsor:

Acceptance Rates

Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Upcoming Conference

STOC '25
57th Annual ACM Symposium on Theory of Computing (STOC 2025)
June 23 - 27, 2025
Prague , Czech Republic

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)99
  • Downloads (Last 6 weeks)15
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Quantum Spin SystemsEncyclopedia of Mathematical Physics10.1016/B978-0-323-95703-8.00049-5(111-124)Online publication date: 2025
  • (2024)The resource theory of tensor networksQuantum10.22331/q-2024-12-11-15608(1560)Online publication date: 11-Dec-2024
  • (2024)Bicolor loop models and their long range entanglementQuantum10.22331/q-2024-02-29-12688(1268)Online publication date: 29-Feb-2024
  • (2024)High-Temperature Gibbs States are Unentangled and Efficiently Preparable2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS61266.2024.00068(1027-1036)Online publication date: 27-Oct-2024
  • (2024)Area law for steady states of detailed-balance local LindbladiansJournal of Mathematical Physics10.1063/5.016735365:5Online publication date: 14-May-2024
  • (2024)Matrix product operator algebras II: phases of matter for 1D mixed statesLetters in Mathematical Physics10.1007/s11005-024-01778-z114:2Online publication date: 13-Mar-2024
  • (2024)Almost Surely Convergence of the Quantum Entropy of Random Graph States and the Area LawInternational Journal of Theoretical Physics10.1007/s10773-024-05678-963:6Online publication date: 17-Jun-2024
  • (2024)Introduction to Quantum Entanglement in Many-Body SystemsNew Trends and Platforms for Quantum Technologies10.1007/978-3-031-55657-9_4(225-285)Online publication date: 1-Oct-2024
  • (2023)Thermal Area Law for Lattice BosonsQuantum10.22331/q-2023-08-16-10837(1083)Online publication date: 16-Aug-2023
  • (2023)Concentration bounds for quantum states and limitations on the QAOA from polynomial approximationsQuantum10.22331/q-2023-05-11-9997(999)Online publication date: 11-May-2023
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media