[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Algorithm 1020: Computation of Multi-Degree Tchebycheffian B-Splines

Published: 16 February 2022 Publication History

Abstract

Multi-degree Tchebycheffian splines are splines with pieces drawn from extended (complete) Tchebycheff spaces, which may differ from interval to interval, and possibly of different dimensions. These are a natural extension of multi-degree polynomial splines. Under quite mild assumptions, they can be represented in terms of a so-called multi-degree Tchebycheffian B-spline (MDTB-spline) basis; such basis possesses all the characterizing properties of the classical polynomial B-spline basis. We present a practical framework to compute MDTB-splines, and provide an object-oriented implementation in Matlab. The implementation supports the construction, differentiation, and visualization of MDTB-splines whose pieces belong to Tchebycheff spaces that are null-spaces of constant-coefficient linear differential operators. The construction relies on an extraction operator that maps local Tchebycheffian Bernstein functions to the MDTB-spline basis of interest.

Supplementary Material

ZIP File (1020.zip)
Software for Computation of Multi-Degree Tchebycheffian B-Splines

References

[1]
A. Aimi, M. Diligenti, M. L. Sampoli, and A. Sestini. 2017. Non-polynomial spline alternatives in isogeometric symmetric Galerkin BEM. Appl. Numer. Math. 116 (2017), 10–23.
[2]
P. J. Barry. 1996. de Boor–Fix dual functionals and algorithms for Tchebycheffian B-spline curves. Constr. Approx. 12 (1996), 385–408.
[3]
C. V. Beccari and G. Casciola. 2021. Matrix representations for multi-degree B-splines. J. Comput. Appl. Math. 381, Article 113007 (2021), 18 pages.
[4]
C. V. Beccari, G. Casciola, and M.-L. Mazure. 2019. Design or not design? A numerical characterisation for piecewise Chebyshevian splines. Numer. Algorithms 81 (2019), 1–31.
[5]
C. V. Beccari, G. Casciola, and M.-L. Mazure. 2020. Critical length: An alternative approach. J. Comput. Appl. Math. 370, Article 112603 (2020), 16 pages.
[6]
C. V. Beccari, G. Casciola, and S. Morigi. 2017. On multi-degree splines. Comput. Aided Geom. Des. 58 (2017), 8–23.
[7]
D. Bister and H. Prautzsch. 1997. A new approach to Tchebycheffian B-splines. In Curves and Surfaces with Applications in CAGD, A. Le Méhauté, C. Rabut, and L. L. Schumaker (Eds.). Vanderbilt University Press, Nashville, 387–394.
[8]
M. Brilleaud and M.-L. Mazure. 2012. Mixed hyperbolic/trigonometric spaces for design. Comput. Math. Appl. 64 (2012), 2459–2477.
[9]
B. Buchwald and G. Mühlbach. 2003. Construction of B-splines for generalized spline spaces generated from local ECT-systems. J. Comput. Appl. Math. 159 (2003), 249–267.
[10]
J. M. Carnicer, E. Mainar, and J. M. Peña. 2003. Critical length for design purposes and extended Chebyshev spaces. Constr. Approx. 20 (2003), 55–71.
[11]
J. M. Carnicer, E. Mainar, and J. M. Peña. 2017. Critical lengths of cycloidal spaces are zeros of Bessel functions. Calcolo 54 (2017), 1521–1531.
[12]
E. Cohen, R. F. Riesenfeld, and G. Elber. 2001. Geometric Modeling with Splines: An Introduction. CRC Press.
[13]
W. A. Coppel. 1971. Disconjugacy. Springer-Verlag.
[14]
P. Costantini, T. Lyche, and C. Manni. 2005. On a class of weak Tchebycheff systems. Numer. Math. 101 (2005), 333–354.
[15]
J. A. Cottrell, T. J. R. Hughes, and Y. Bazilevs. 2009. Isogeometric Analysis: Toward Integration of CAD and FEA. John Wiley & Sons.
[16]
M. Fang, W. Ma, and G. Wang. 2010. A generalized curve subdivision scheme of arbitrary order with a tension parameter. Comput. Aided Geom. Des. 27 (2010), 720–733.
[17]
R. R. Hiemstra, T. J. R. Hughes, C. Manni, H. Speleers, and D. Toshniwal. 2020. A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties. SIAM J. Numer. Anal. 58 (2020), 1138–1163.
[18]
S. Karlin. 1968. Total Positivity. Stanford University Press.
[19]
S. Karlin and Z. Ziegler. 1966. Chebyshevian spline functions. SIAM J. Numer. Anal. 3 (1966), 514–543.
[20]
P. E. Koch and T. Lyche. 1993. Interpolation with exponential B-splines in tension. In Geometric Modelling, G. Farin, H. Hagen, H. Noltemeier, and W. Knödel (Eds.). Springer–Verlag, Wien, 173–190.
[21]
B. Kvasov and P. Sattayatham. 1999. GB-splines of arbitrary order. J. Comput. Appl. Math. 104 (1999), 63–88.
[22]
T. Lyche. 1985. A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1 (1985), 155–173.
[23]
T. Lyche, C. Manni, and H. Speleers. 2019. Tchebycheffian B-splines revisited: An introductory exposition. In Advanced Methods for Geometric Modeling and Numerical Simulation, C. Giannelli and H. Speleers (Eds.). Springer INdAM Series, Vol. 35. Springer International Publishing AG, 179–216.
[24]
C. Manni, F. Pelosi, and M. L. Sampoli. 2011. Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200 (2011), 867–881.
[25]
C. Manni, A. Reali, and H. Speleers. 2015. Isogeometric collocation methods with generalized B-splines. Comput. Math. Appl. 70 (2015), 1659–1675.
[26]
C. Manni, F. Roman, and H. Speleers. 2017. Generalized B-splines in isogeometric analysis. In Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker (Eds.). Springer Proceedings in Mathematics & Statistics, Vol. 201. Springer International Publishing AG, 239–267.
[27]
M.-L. Mazure. 2007. Extended Chebyshev piecewise spaces characterised via weight functions. J. Approx. Theory 145 (2007), 33–54.
[28]
M.-L. Mazure. 2011a. Finding all systems of weight functions associated with a given extended Chebyshev space. J. Approx. Theory 163 (2011), 363–376.
[29]
M.-L. Mazure. 2011b. How to build all Chebyshevian spline spaces good for geometric design?Numer. Math. 119 (2011), 517–556.
[30]
M.-L. Mazure. 2018. Constructing totally positive piecewise Chebyshevian B-spline bases. J. Comput. Appl. Math. 342 (2018), 550–586.
[31]
G. Nürnberger, L. L. Schumaker, M. Sommer, and H. Strauss. 1983. Interpolation by generalized splines. Numer. Math. 42 (1983), 195–212.
[32]
G. Nürnberger, L. L. Schumaker, M. Sommer, and H. Strauss. 1984. Generalized Chebyshevian splines. SIAM J. Math. Anal. 15 (1984), 790–804.
[33]
H. Pottmann. 1993. The geometry of Tchebycheffian splines. Comput. Aided Geom. Des. 10 (1993), 181–210.
[34]
F. Roman, C. Manni, and H. Speleers. 2017. Numerical approximation of GB-splines by a convolutional approach. Appl. Numer. Math. 116 (2017), 273–285.
[35]
Á. Róth. 2019. Algorithm 992: An OpenGL- and C++-based function library for curve and surface modeling in a large class of extended Chebyshev spaces. ACM Trans. Math. Software 45, Article 13 (2019), 32 pages.
[36]
J. Sánchez-Reyes. 1998. Harmonic rational Bézier curves, p-Bézier curves and trigonometric polynomials. Comput. Aided Geom. Des. 15 (1998), 909–923.
[37]
L. L. Schumaker. 2007. Spline Functions: Basic Theory, Third Edition. Cambridge University Press.
[38]
W.-Q. Shen and G.-Z. Wang. 2005. A class of quasi Bézier curves based on hyperbolic polynomials. J. Zhejiang Univ. Sci. A 6 (2005), 116–123.
[39]
H. Speleers. 2019. Algorithm 999: Computation of multi-degree B-splines. ACM Trans. Math. Software 45, Article 43 (2019), 15 pages.
[40]
D. Toshniwal, H. Speleers, R. R. Hiemstra, and T. J. R. Hughes. 2017. Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 316 (2017), 1005–1061.
[41]
D. Toshniwal, H. Speleers, R. R. Hiemstra, C. Manni, and T. J. R. Hughes.2020. Multi-degree B-splines: Algorithmic computation and properties. Comput. Aided Geom. Des. 76, Article 101792 (2020), 16 pages.
[42]
M. Unser. 2005. Cardinal exponential splines: Part II—Think analog, act digital. IEEE Trans. Signal Process. 53 (2005), 1439–1449.
[43]
M. Unser and T. Blu. 2005. Cardinal exponential splines: Part I—Theory and filtering algorithms. IEEE Trans. Signal Process. 53 (2005), 1425–1438.
[44]
G. Wang and M. Fang. 2008. Unified and extended form of three types of splines. J. Comput. Appl. Math. 216 (2008), 498–508.

Cited By

View all
  • (2024)Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problemsMathematics and Computers in Simulation10.1016/j.matcom.2024.05.011225(98-110)Online publication date: Nov-2024
  • (2024)Adaptive isogeometric analysis based on locally refined Tchebycheffian B-splinesComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117186430(117186)Online publication date: Oct-2024
  • (2024)High order approximation by CCC-spline quasi-interpolantsJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115715442:COnline publication date: 17-Apr-2024
  • Show More Cited By

Index Terms

  1. Algorithm 1020: Computation of Multi-Degree Tchebycheffian B-Splines

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Mathematical Software
      ACM Transactions on Mathematical Software  Volume 48, Issue 1
      March 2022
      320 pages
      ISSN:0098-3500
      EISSN:1557-7295
      DOI:10.1145/3505199
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 16 February 2022
      Accepted: 01 July 2021
      Revised: 01 June 2021
      Received: 01 June 2020
      Published in TOMS Volume 48, Issue 1

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Tchebycheffian splines
      2. multi-degree splines
      3. B-splines
      4. extraction operator
      5. constant-coefficient linear differential operators

      Qualifiers

      • Research-article
      • Refereed

      Funding Sources

      • Beyond Borders Programme of the University of Rome Tor Vergata through the project ASTRID
      • MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)46
      • Downloads (Last 6 weeks)4
      Reflects downloads up to 05 Mar 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Normalized B-spline-like representation for low-degree Hermite osculatory interpolation problemsMathematics and Computers in Simulation10.1016/j.matcom.2024.05.011225(98-110)Online publication date: Nov-2024
      • (2024)Adaptive isogeometric analysis based on locally refined Tchebycheffian B-splinesComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2024.117186430(117186)Online publication date: Oct-2024
      • (2024)High order approximation by CCC-spline quasi-interpolantsJournal of Computational and Applied Mathematics10.1016/j.cam.2023.115715442:COnline publication date: 17-Apr-2024
      • (2024)On the positivity of B-spline WronskiansCalcolo10.1007/s10092-024-00613-061:3Online publication date: 10-Sep-2024
      • (2023)Isogeometric Schwarz Preconditioners with Generalized B-Splines for the Biharmonic ProblemAxioms10.3390/axioms1205045212:5(452)Online publication date: 4-May-2023
      • (2023)Tchebycheffian B-splines in isogeometric Galerkin methodsComputer Methods in Applied Mechanics and Engineering10.1016/j.cma.2022.115648403(115648)Online publication date: Jan-2023
      • (2023)A linear algebra approach to HP-splines frequency parameter selectionApplied Mathematics and Computation10.1016/j.amc.2023.128241458:COnline publication date: 1-Dec-2023
      • (2022)C2 Cubic Algebraic Hyperbolic Spline Interpolating Scheme by Means of Integral ValuesMathematics10.3390/math1009149010:9(1490)Online publication date: 29-Apr-2022

      View Options

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Full Text

      View this article in Full Text.

      Full Text

      HTML Format

      View this article in HTML Format.

      HTML Format

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media