[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3462203.3475874acmconferencesArticle/Chapter ViewAbstractPublication PagesgooditConference Proceedingsconference-collections
research-article

Coronabot: A Conversational AI System for Tackling Misinformation

Published: 09 September 2021 Publication History

Abstract

Covid-19 has brought with it an onslaught of information for the public, some true and some false, across virtually every platform. For an individual, the task of sifting through the deluge for reliable, accurate facts is significant and potentially off-putting. This matters since fundamentally, containment of the pandemic relies on individuals' compliance with public health measures and their understanding of the need for them, and any barrier to this, including misinformation, can have profoundly negative effects. In this paper we present a conversational AI system which tackles misinformation using a two-pronged approach: firstly, by giving users easy, Natural Language access via speech or text to concise, reliable information synthesised from multiple authoritative sources; and secondly, by directly rebutting commonly circulated myths surrounding coronavirus. The initial system is targeted at staff and students of a University, but has the potential for wide applicability. In tests of the system's Natural Language Understanding (NLU) we achieve an F1-score of 0.906. We also discuss current research challenges in the area of conversational Natural Language interfaces for health information.

References

[1]
Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, and Alan Nichol. 2020. DIET: Lightweight Language Understanding for Dialogue Systems. arXiv e-prints, Article arXiv:2004.09936 (April 2020).
[2]
Amanda C. Curry, Ioannis Papaioannou, Alessandro Suglia, Shubham Agarwal, Igor Shalyminov, Xinnuo Xu, Ondřej Dušek, Arash Eshghi, Ioannis Konstas, Verena Rieser, and Oliver Lemon. 2018. Alana v2: Entertaining and informative open-domain social dialogue using ontologies and entity linking. Alexa Prize Proceedings (2018).
[3]
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Association for Computational Linguistics.
[4]
Sarah Dryhurst, Claudia R. Schneider, John Kerr, Alexandra L. J. Freeman, Gabriel Recchia, Anne Marthe van der Bles, David Spiegelhalter, and Sander van der Linden. 2020. Risk perceptions of COVID-19 around the world. Journal of Risk Research 23, 7-8 (2020), 994--1006.
[5]
Mohamed K. Elhadad, Kin Fun Li, and Fayez Gebali. 2020. Detecting Misleading Information on COVID-19. IEEE Access 8 (2020), 165201--165215.
[6]
Nancie Gunson, Weronika Sieińska, Christopher Walsh, Christian Dondrup, and Oliver Lemon. 2020. It's Good to Chat? Evaluation and Design Guidelines for Combining Open-Domain Social Conversation with Task-Based Dialogue in Intelligent Buildings. In Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents (Virtual Event, Scotland, UK) (IVA '20). Association for Computing Machinery, New York, NY, USA, Article 24, 8 pages.
[7]
Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić, Pei-Hao Su, Tsung-Hsien Wen, and Ivan Vulić. 2020. ConveRT: Efficient and Accurate Conversational Representations from Transformers. In Findings of the Association for Computational Linguistics: EMNLP 2020.
[8]
Maguire Herriman, Elana Meer, Roy Rosin, Vivian Lee, and Kevin G Volpp. 2020. Asked and Answered: Building a Chatbot to Address Covid-19-Related Concerns. NEJM Catalyst Innovations in Care Delivery (2020).
[9]
Sviatlana Höhn and Kerstin Bongard-Blanchy. 2021. Heuristic Evaluation of COVID-19 Chatbots. In Lecture Notes in Computer Science, Vol. 12604 LNCS.
[10]
Nicole M. Krause, Isabelle Freiling, Becca Beets, and Dominique Brossard. 2020. Fact-checking as risk communication: the multi-layered risk of misinformation in times of COVID-19. Journal of Risk Research 23, 7-8 (2020), 1052--1059.
[11]
Heidi Oi-Yee Li, Adrian Bailey, David Huynh, and James Chan. 2020. YouTube as a source of information on COVID-19: a pandemic of misinformation? BMJ Global Health 5, 5 (2020).
[12]
Winnie Mak, Fanny Cheung, J Woo, D Lee, Patrick Li, K Chan, and C Tam. 2009. A comparative study of the stigma associated with infectious diseases (SARS, AIDS, TB). Hong Kong medical journal 15 Suppl 8 (12 2009), 34--7.
[13]
Adam S Miner, Liliana Laranjo, and A. Baki Kocaballi. 2020. Chatbots in the fight against the COVID-19 pandemic. npj Digital Medicine 3, 1 (2020), 1--4.
[14]
A. Mitchell and J.B. Oliphant. 2020. Americans Immersed in COVID-19 News; Most Think Media Are Doing Fairly Well Covering It. Retrieved Apr 4, 2021 from https://www.journalism.org/2020/03/18/americans-immersed-in-covid-19-news-most-think-media-are-doing-fairly-well-covering-it/PewResearchCentre
[15]
Ofcom. 2020. Half of UK adults exposed to false claims about coronavirus. Retrieved Apr 4, 2021 from https://www.ofcom.org.uk/about-ofcom/latest/features-and-news/half-of-uk-adults-exposed-to-false-claims-about-coronavirus
[16]
David Oniani and Yanshan Wang. 2020. A Qualitative Evaluation of Language Models on Automatic Question-Answering for COVID-19. In Proceedings of the 11th ACM International Conference on Bioinformatics, Computational Biology and Health Informatics, BCB 2020. arXiv:2006.10964
[17]
Ioannis Papaioannou, Amanda Cercas Curry, Jose L. Part, Igor Shalyminov, Xinnuo Xu, Yanchao Yu, Ondřej Dušek, Verena Rieser, et al. 2017. Alana: Social Dialogue using an Ensemble Model and a Ranker trained on User Feedback. Alexa Prize Proceedings (2017).
[18]
Parth Patwa, Mohit Bhardwaj, Vineeth Guptha, Gitanjali Kumari, Shivam Sharma, Srinivas PYKL, Amitava Das, Asif Ekbal, Shad Akhtar, and Tanmoy Chakraborty. 2021. Overview of CONSTRAINT 2021 Shared Tasks: Detecting English COVID-19 Fake News and Hindi Hostile Posts. In Proceedings of the First Workshop on Combating Online Hostile Posts in Regional Languages during Emergency Situation (CONSTRAINT). Springer.
[19]
Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI blog 1, 8 (2019), 9.
[20]
Linley. Sanders. 2020. The Difference between What Republicans and Democrats Believe to be True about COVID-19. Retrieved Apr 4, 2021 from https://today.yougov.com/topics/politics/articles-reports/2020/05/26/republicans-democrats-misinformation
[21]
UK Edition The Guardian. 2020. UK phone masts attacked amid 5G-coronavirus conspiracy theory. Retrieved Apr 2, 2021 from https://www.theguardian.com/uk-news/2020/apr/04/uk-phone-masts-attacked-amid-5g-coronavirus-conspiracy-theory
[22]
Sander van der Linden, Jon Roozenbeek, and Josh Compton. 2020. Inoculating Against Fake News About COVID-19. Frontiers in Psychology 11 (2020), 2928.
[23]
Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh, Sijia Yang, Jingwen Zhang, and Zhou Yu. 2020. Persuasion for good: Towards a personalized persuasive dialogue system for social good. In ACL 2019 - 57th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference. 5635--5649.
[24]
World Health Organisation (WHO). 2020. Coronavirus disease (COVID-19) advice for the public: Mythbusters. Retrieved April 19, 2021 from https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public/myth-busters
[25]
World Health Organisation (WHO). 2020. WHO Health Alert brings COVID-19 facts to billions via WhatsApp. Retrieved April 19, 2021 from https://www.who.int/news-room/feature-stories/detail/who-health-alert-brings-covid-19-facts-to-billions-via-whatsapp
[26]
World Health Organisation (WHO). 2020. "Novel Coronavirus (2019-nCoV). situation report -13. Retrieved Apr 19th, 2021 from https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200202-sitrep-13-ncov-v3.pdf
[27]
World Health Organisation (WHO). 2021. Weekly epidemiological update on COVID-19 - 20 April 2021. Retrieved April 26, 2021 from https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---20-april-2021
[28]
Shuiqiao Yang, Jiaojiao Jiang, Arindam Pal, Kun Yu, Fang Chen, and Shui Yu. 2020. Analysis and Insights for Myths Circulating on Twitter During the COVID-19 Pandemic. IEEE Open Journal of the Computer Society 1, October (2020), 209--219.

Cited By

View all
  • (2024)Detection of Misinformation Related to Pandemic Diseases using Machine Learning Techniques in Social Media PlatformsEAI Endorsed Transactions on Pervasive Health and Technology10.4108/eetpht.10.645910Online publication date: 28-Jun-2024
  • (2023)Understanding the Benefits and Design of Chatbots to Meet the Healthcare Needs of Migrant WorkersProceedings of the ACM on Human-Computer Interaction10.1145/36101067:CSCW2(1-34)Online publication date: 4-Oct-2023
  • (2023)Fact Checking Chatbot: A Misinformation Intervention for Instant Messaging Apps and an Analysis of Trust in the Fact CheckersMobile Communication and Online Falsehoods in Asia10.1007/978-94-024-2225-2_11(197-224)Online publication date: 12-Jun-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
GoodIT '21: Proceedings of the Conference on Information Technology for Social Good
September 2021
345 pages
ISBN:9781450384780
DOI:10.1145/3462203
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 September 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. NLU
  2. chatbots
  3. conversational AI
  4. coronavirus
  5. covid-19
  6. disinformation
  7. infodemic
  8. misinformation

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

GoodIT '21
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)86
  • Downloads (Last 6 weeks)6
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Detection of Misinformation Related to Pandemic Diseases using Machine Learning Techniques in Social Media PlatformsEAI Endorsed Transactions on Pervasive Health and Technology10.4108/eetpht.10.645910Online publication date: 28-Jun-2024
  • (2023)Understanding the Benefits and Design of Chatbots to Meet the Healthcare Needs of Migrant WorkersProceedings of the ACM on Human-Computer Interaction10.1145/36101067:CSCW2(1-34)Online publication date: 4-Oct-2023
  • (2023)Fact Checking Chatbot: A Misinformation Intervention for Instant Messaging Apps and an Analysis of Trust in the Fact CheckersMobile Communication and Online Falsehoods in Asia10.1007/978-94-024-2225-2_11(197-224)Online publication date: 12-Jun-2023

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media