[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/3458817.3487402acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article
Open access

Extreme-scale ab initio quantum raman spectra simulations on the leadership HPC system in China

Published: 13 November 2021 Publication History

Abstract

Raman spectroscopy provides chemical and compositional information that can serve as a structural fingerprint for various materials. Therefore, simulations of Raman spectra, including both quantum perturbation analyses and ground-state calculations, are of significant interest. However, highly accurate full quantum mechanical (QM) simulations of Raman spectra have previously been confined to small systems. For large systems such as biological materials, full QM simulations have an extremely high computational cost and remain challenging. In this work, robust new algorithms and advanced implementations on many-core architectures are employed to enable fast, accurate, and massively parallel full ab initio simulations of the Raman spectra of realistic biological systems containing up to 3006 atoms, with excellent strong and weak scaling. Up to a performance of 468.5 PFLOP/s in double-precision and 813.7 PLOPS/s in mixed-half precision is achieved on the new-generation Sunway high-performance computing system, suggesting the potential for new applications of the QM approach to biological systems.

Supplementary Material

MP4 File (Extreme-Scale Ab Initio Quantum Raman Spectra Simulations on the Leadership HPC System in China.mp4)
Presentation video

References

[1]
V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, "Ab initio molecular simulations with numeric atom-centered orbitals," Comput. Phys. Commun., vol. 180, no. 11, pp. 2175--2196, Nov. 2009. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0010465509002033
[2]
F. Gygi, C. W. Ueberhuber, J. Lorenz, E. W. Draeger, M. Schulz, B. R. de Supinski, J. A. Gunnels, V. Austel, J. C. Sexton, F. Franchetti, and S. Kral, "Gordon Bell finalists I---Large-scale electronic structure calculations of high-Z metals on the BlueGene/L platform," in Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06. New York, New York, USA: ACM Press, 2006, p. 45. [Online]. Available: http://portal.acm.org/citation.cfm?doid=1188455.1188502
[3]
Y. Hasegawa, M. Kurokawa, H. Inoue, I. Miyoshi, M. Yokokawa, J.-I. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Minami, T. Boku, F. Shoji, and A. Uno, "First-principles calculations of electron states of a silicon nanowire with 100,000 atoms on the K computer," in Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis on - SC '11. New York, New York, USA: ACM Press, 2011, p. 1. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2063384.2063386
[4]
J. L. Fattebert, D. Osei-Kuffuor, E. W. Draeger, T. Ogitsu, and W. D. Krauss, "Modeling Dilute Solutions Using First-Principles Molecular Dynamics: Computing more than a Million Atoms with over a Million Cores," in International Conference for High Performance Computing, Networking, Storage and Analysis, SC, no. November, 2016, pp. 12--22.
[5]
S. Das, P. Motamarri, V. Gavini, B. Turcksin, Y. W. Li, and B. Leback, "Fast, scalable and accurate finite-element based ab initio calculations using mixed precision computing," in Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. New York, NY, USA: ACM, nov 2019, pp. 1--11. [Online].
[6]
J. VandeVondele, U. Borštnik, and J. Hutter, "Linear Scaling Self-Consistent Field Calculations with Millions of Atoms in the Condensed Phase," Journal of Chemical Theory and Computation, vol. 8, no. 10, pp. 3565--3573, oct 2012. [Online].
[7]
A. N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier, and T. Hoefler, "A data-centric approach to extreme-scale ab initio dissipative quantum transport simulations," in International Conference for High Performance Computing, Networking, Storage and Analysis, SC, 2019.
[8]
A. Nakata, J. S. Baker, S. Y. Mujahed, J. T. L. Poulton, S. Arapan, J. Lin, Z. Raza, S. Yadav, L. Truflandier, T. Miyazaki, and D. R. Bowler, "Large scale and linear scaling DFT with the CONQUEST code," The Journal of Chemical Physics, vol. 152, no. 16, p. 164112, apr 2020. [Online].
[9]
J. C. Prentice, J. Aarons, J. C. Womack, A. E. Allen, L. Andrinopoulos, L. Anton, R. A. Bell, A. Bhandari, G. A. Bramley, R. J. Charlton, R. J. Clements, D. J. Cole, G. Constantinescu, F. Corsetti, S. M. Dubois, K. K. Duff, J. M. Escartín, A. Greco, Q. Hill, L. P. Lee, E. Linscott, D. D. O'Regan, M. J. Phipps, L. E. Ratcliff, Á. R. Serrano, E. W. Tait, G. Teobaldi, V. Vitale, N. Yeung, T. J. Zuehlsdorff, J. Dziedzic, P. D. Haynes, N. D. Hine, A. A. Mostofi, M. C. Payne, and C. K. Skylaris, "The ONETEP linear-scaling density functional theory program," Journal of Chemical Physics, vol. 152, no. 17, 2020.
[10]
L. E. Ratcliff, W. Dawson, G. Fisicaro, D. Caliste, S. Mohr, A. Degomme, B. Videau, V. Cristiglio, M. Stella, M. D'Alessandro, S. Goedecker, T. Nakajima, T. Deutsch, and L. Genovese, "Flexibilities of wavelets as a computational basis set for large-scale electronic structure calculations," The Journal of chemical physics, vol. 152, no. 19, p. 194110, 2020. [Online].
[11]
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502, sep 2009. [Online]. Available: https://iopscience.iop.org/article/10.1088/0953-8984/21/39/395502
[12]
V. W. Elloh, A. Yaya, A. K. Mishra, G. Gebreyesus, K. Kan-Dapaah, E. K. K. Abavare, and B. Onwona-Agyeman, "Computational modelling of structural, electronic, optical and vibrational properties of pvk/c-60 nanoheterostructure interfaces," Biointerface Research in Applied Chemistry, vol. 11, no. 3, pp. 10864--10884, 2021. [Online]. Available: ⟨GotoISI⟩://WOS:000591668100085
[13]
R. e. a. Dovesi, "The CRYSTAL code, 1976--2020 and beyond, a long story," The Journal of chemical physics, vol. 152, no. 20, p. 204111, 2020. [Online].
[14]
S. Salustro, A. M. Ferrari, R. Orlando, and R. Dovesi, "Comparison between cluster and supercell approaches: the case of defects in diamond," Theoretical Chemistry Accounts, vol. 136, no. 4, pp. 1--13, 2017.
[15]
K. Reiter, F. Weigend, L. N. Wirz, M. Dimitrova, and D. Sundholm, "Magnetically Induced Current Densities in Toroidal Carbon Nanotubes," Journal of Physical Chemistry C, vol. 123, no. 24, pp. 15 354--15 365, 2019.
[16]
S. Luber and M. Reiher, "Theoretical raman optical activity study of the ß domain of rat metallothionein," Journal of Physical Chemistry B, vol. 114, no. 2, pp. 1057--1063, 2010.
[17]
H. Shang, C. Carbogno, P. Rinke, and M. Scheffler, "Lattice dynamics calculations based on density-functional perturbation theory in real space," Computer Physics Communications, vol. 215, pp. 26--46, jun 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0010465517300437https://linkinghub.elsevier.com/retrieve/pii/S0010465517300437
[18]
H. Shang, N. Raimbault, P. Rinke, M. Scheffler, M. Rossi, and C. Carbogno, "All-electron, real-space perturbation theory for homogeneous electric fields: theory, implementation, and application within DFT," New Journal of Physics, vol. 20, no. 7, p. 073040, jul 2018. [Online]. Available: http://stacks.iop.org/1367-2630/20/i=7/a=073040?key=crossref.b45b8680fc0308226fe0611417a68450
[19]
P. G. et al., "Quantum espresso: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395502 (19pp), 2009. [Online]. Available: http://www.quantum-espresso.org
[20]
G. Kresse and J. Hafner, "Ab initio molecular dynamics for liquid metals," Phys. Rev. B, vol. 47, pp. 558--561, Jan 1993. [Online].
[21]
A. H. e. a. Romero, "ABINIT: Overview and focus on selected capabilities," Journal of Chemical Physics, vol. 152, no. 12, 2020. [Online].
[22]
X. Andrade, D. Strubbe, U. De Giovannini, A. H. Larsen, M. J. T. Oliveira, J. Alberdi-Rodriguez, A. Varas, I. Theophilou, N. Helbig, M. J. Verstraete, L. Stella, F. Nogueira, A. Aspuru-Guzik, A. Castro, M. A. L. Marques, and A. Rubio, "Real-space grids and the octopus code as tools for the development of new simulation approaches for electronic systems," Phys. Chem. Chem. Phys., vol. 17, pp. 31 371--31 396, 2015. [Online].
[23]
T. D. e. a. Kühne, "CP2K: An electronic structure and molecular dynamics software package -Quickstep: Efficient and accurate electronic structure calculations," Journal of Chemical Physics, vol. 152, no. 19, 2020. [Online].
[24]
K. e. a. Lejaeghere, "Reproducibility in density functional theory calculations of solids," Science, vol. 351, no. 6280, pp. aad3000--aad3000, mar 2016. [Online].
[25]
M. Frisch, M. Head-Gordon, and J. Pople, "Direct analytic scf second derivatives and electric field properties," Chem. Phys., vol. 141, no. 2--3, pp. 189 -- 196, 1990. [Online]. Available: http://www.sciencedirect.com/science/article/pii/030101049087055G
[26]
B. Delley, "An all-electron numerical method for solving the local density functional for polyatomic molecules," J. Chem. Phys., vol. 92, no. 1, p. 508, 1990. [Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/92/1/10.1063/1.458452
[27]
P. Bouř, J. Sopková, L. Bednárová, P. Maloň, and T. A. Keiderling, "Transfer of molecular property tensors in cartesian coordinates: A new algorithm for simulation of vibrational spectra," Journal of Computational Chemistry, vol. 18, no. 5, pp. 646--659, apr 1997. [Online].
[28]
F. Pascale, S. Salustro, A. Maria, F. Michel, R. Philippe, and D. A. Roberto, "The Infrared spectrum of very large (periodic) systems : global versus fragment strategies --- the case of three defects in diamond," Theoretical Chemistry Accounts, vol. 137, no. 12, pp. 1--7, 2018. [Online].
[29]
N. S. Bieler, M. P. Haag, C. R. Jacob, and M. Reiher, "Analysis of the Cartesian Tensor Transfer Method for Calculating Vibrational Spectra of Polypeptides," Journal of Chemical Theory and Computation, vol. 7, no. 6, pp. 1867--1881, jun 2011. [Online].
[30]
S. Yamamoto, X. Li, K. Ruud, and P. Bouř, "Transferability of Various Molecular Property Tensors in Vibrational Spectroscopy," Journal of Chemical Theory and Computation, vol. 8, no. 3, pp. 977--985, mar 2012. [Online].
[31]
A. D. Becke, "A multicenter numerical integration scheme for polyatomic molecules," J. Chem. Phys., vol. 88, no. 4, pp. 2547--2553, 1988. [Online]. Available: http://scitation.aip.org/content/aip/journal/jcp/88/4/10.1063/1.454033
[32]
V. Havu, V. Blum, P. Havu, and M. Scheffler, "Efficient integration for all-electron electronic structure calculation using numeric basis functions," J. Comput. Phys., vol. 228, no. 22, pp. 8367--8379, Dec. 2009. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S0021999109004458
[33]
M. S. Lam and M. Wolf, "A data locality optimizing algorithm," in Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation, ser. PLDI 91. New York, NY, USA: ACM, 1991, pp. 30--44.
[34]
S. Coleman and K. S. McKinley, "Tile size selection using cache organization and data layout," in Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation, ser. PLDI 95. New York, NY, USA: ACM, 1995, pp. 279--290.
[35]
W. Zhao, H. Fu, J. Fang, W. Zheng, L. Gan, and G. Yang, "Optimizing convolutional neural networks on the sunway taihulight supercomputer," ACM Transactions on Architecture and Code Optimization (TACO), vol. 15, no. 1, pp. 1--26, 2018.
[36]
B. Khailany and B. Khailany, "Cudadma: Optimizing gpu memory bandwidth via warp specialization," in High Performance Computing, Networking, Storage and Analysis, 2011.
[37]
A. M. N. Niklasson, "Expansion algorithm for the density matrix," Phys. Rev. B, vol. 66, p. 155115, Oct 2002. [Online].
[38]
A. M. N. Niklasson and M. Challacombe, "Density Matrix Perturbation Theory," Physical Review Letters, vol. 92, no. 19, p. 193001, may 2004. [Online].
[39]
W. Kohn, "Density functional and density matrix method scaling linearly with the number of atoms," Phys. Rev. Lett., vol. 76, pp. 3168--3171, Apr 1996. [Online].
[40]
D. R. Bowler and T. Miyazaki, "Calculations for millions of atoms with density functional theory: linear scaling shows its potential," J. Phys. Condens. Matter, vol. 22, no. 7, p. 74207, 2010. [Online]. Available: http://stacks.iop.org/0953-8984/22/i=7/a=074207
[41]
H. Shang, H. Xiang, Z. Li, and J. Yang, "Linear scaling electronic structure calculations with numerical atomic basis set," International Reviews in Physical Chemistry, vol. 29, no. 4, pp. 665--691, oct 2010. [Online].
[42]
H. Shang, W. Liang, Y. Zhang, and J. Yang, "Efficient parallel linear scaling method to get the response density matrix in all-electron real-space density-functional perturbation theory," Computer Physics Communications, vol. 258, p. 107613, 2021. [Online].
[43]
J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., vol. 77, pp. 3865--3868, Oct 1996. [Online].
[44]
I. Petousis, W. Chen, G. Hautier, T. Graf, T. D. Schladt, K. A. Persson, and F. B. Prinz, "Benchmarking density functional perturbation theory to enable high-throughput screening of materials for dielectric constant and refractive index," Phys. Rev. B, vol. 93, no. 11, p. 115151, mar 2016. [Online].
[45]
H. J. Butler, L. Ashton, B. Bird, G. Cinque, K. Curtis, J. Dorney, K. Esmonde-White, N. J. Fullwood, B. Gardner, P. L. Martin-Hirsch, M. J. Walsh, M. R. McAinsh, N. Stone, and F. L. Martin, "Using Raman spectroscopy to characterize biological materials," Nature Protocols, vol. 11, no. 4, pp. 664--687, 2016.
[46]
M. Wang, R. Cao, L. Zhang, X. Yang, J. Liu, M. Xu, Z. Shi, Z. Hu, W. Zhong, and G. Xiao, "Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro," Cell Research, no. January, pp. 2019--2021, 2020.
[47]
J. Huang, J. Wen, M. Zhou, S. Ni, W. Le, G. Chen, L. Wei, Y. Zeng, D. Qi, M. Pan, J. Xu, Y. Wu, Z. Li, Y. Feng, Z. Zhao, Z. He, B. Li, S. Zhao, B. Zhang, P. Xue, S. He, K. Fang, Y. Zhao, and K. Du, "On-site detection of sars-cov-2 antigen by deep learning-based surface-enhanced raman spectroscopy and its biochemical foundations," Analytical Chemistry, vol. 93, no. 26, pp. 9174--9182, 2021. 34155883. [Online].

Cited By

View all
  • (2024)swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway supercomputerCCF Transactions on High Performance Computing10.1007/s42514-023-00159-76:4(439-458)Online publication date: 11-Jan-2024
  • (2024)10-Million Atoms Simulation of First-Principle Package LS3DFJournal of Computer Science and Technology10.1007/s11390-023-3011-639:1(45-62)Online publication date: 30-Jan-2024
  • (2023)Scalability and efficiency challenges for the exascale supercomputing system: practice of a parallel supporting environment on the Sunway exascale prototype system面对E级超算系统的可扩展性和效率挑战: 神威E级原型系统并行支撑环境的实践Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.220041224:1(41-58)Online publication date: 23-Jan-2023
  • Show More Cited By

Index Terms

  1. Extreme-scale ab initio quantum raman spectra simulations on the leadership HPC system in China
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          SC '21: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
          November 2021
          1493 pages
          ISBN:9781450384421
          DOI:10.1145/3458817
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Sponsors

          In-Cooperation

          • IEEE CS

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 13 November 2021

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. all-electron
          2. biological systems
          3. many-core processor
          4. massively parallel and high-performance simulations
          5. quantum mechanics
          6. raman spectra

          Qualifiers

          • Research-article

          Funding Sources

          Conference

          SC '21
          Sponsor:

          Acceptance Rates

          Overall Acceptance Rate 1,516 of 6,373 submissions, 24%

          Upcoming Conference

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)349
          • Downloads (Last 6 weeks)34
          Reflects downloads up to 10 Dec 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)swCUDA: Auto parallel code translation framework from CUDA to ATHREAD for new generation sunway supercomputerCCF Transactions on High Performance Computing10.1007/s42514-023-00159-76:4(439-458)Online publication date: 11-Jan-2024
          • (2024)10-Million Atoms Simulation of First-Principle Package LS3DFJournal of Computer Science and Technology10.1007/s11390-023-3011-639:1(45-62)Online publication date: 30-Jan-2024
          • (2023)Scalability and efficiency challenges for the exascale supercomputing system: practice of a parallel supporting environment on the Sunway exascale prototype system面对E级超算系统的可扩展性和效率挑战: 神威E级原型系统并行支撑环境的实践Frontiers of Information Technology & Electronic Engineering10.1631/FITEE.220041224:1(41-58)Online publication date: 23-Jan-2023
          • (2023)Toward Exascale Computation for Turbomachinery FlowsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.1145/3581784.3627040(1-12)Online publication date: 12-Nov-2023
          • (2023)swMPAS-A: Scaling MPAS-A to 39 Million Heterogeneous Cores on the New Generation Sunway SupercomputerIEEE Transactions on Parallel and Distributed Systems10.1109/TPDS.2022.321500234:1(141-153)Online publication date: 1-Jan-2023
          • (2023)Parallel Optimization of Computational Fluid Dynamics Application code_saturne Based on Next Generation Sunway Supercomputer2023 IEEE 14th International Symposium on Parallel Architectures, Algorithms and Programming (PAAP)10.1109/PAAP60200.2023.10391738(1-6)Online publication date: 24-Nov-2023
          • (2023)Parallel algorithm design and optimization of geodynamic numerical simulation application on the Tianhe new-generation high-performance computerThe Journal of Supercomputing10.1007/s11227-023-05469-980:1(331-362)Online publication date: 24-Jun-2023
          • (2023)SW-TRRM: Parallel Optimization Research of the Random Ray Method Based on Sunway Bluelight II SupercomputerAlgorithms and Architectures for Parallel Processing10.1007/978-981-97-0808-6_22(373-393)Online publication date: 20-Oct-2023
          • (2023)SW-LeNet: Implementation and Optimization of LeNet-1 Algorithm on Sunway Bluelight II SupercomputerAlgorithms and Architectures for Parallel Processing10.1007/978-981-97-0808-6_16(277-298)Online publication date: 20-Oct-2023
          • (2022)Scaling graph 500 SSSP to 140 trillion edges with over 40 million coresProceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis10.5555/3571885.3571910(1-15)Online publication date: 13-Nov-2022
          • Show More Cited By

          View Options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Login options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media