[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article
Open access

Automata and fixpoints for asynchronous hyperproperties

Published: 04 January 2021 Publication History

Abstract

Hyperproperties have received increasing attention in the last decade due to their importance e.g. for security analyses. Past approaches have focussed on synchronous analyses, i.e. techniques in which different paths are compared lockstepwise. In this paper, we systematically study asynchronous analyses for hyperproperties by introducing both a novel automata model (Alternating Asynchronous Parity Automata) and the temporal fixpoint calculus Hµ, the first fixpoint calculus that can systematically express hyperproperties in an asynchronous manner and at the same time subsumes the existing logic HyperLTL. We show that the expressive power of both models coincides over fixed path assignments. The high expressive power of both models is evidenced by the fact that decision problems of interest are highly undecidable, i.e. not even arithmetical. As a remedy, we propose approximative analyses for both models that also induce natural decidable fragments.

References

[1]
Henrik Reif Andersen. 1994. A polyadic modal-calculus. Technical Report ID-TR: 1994-195. Dept. of Computer Science, Technical University of Denmark, Copenhagen.
[2]
Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. 2009. Context-Bounded Analysis for Concurrent Programs with Dynamic Creation of Threads. In Tools and Algorithms for the Construction and Analysis of Systems, 15th International Conference, TACAS 2009 (Lecture Notes in Computer Science, Vol. 5505 ), Stefan Kowalewski and Anna Philippou (Eds.). Springer, 107-123. https://doi.org/10.1007/978-3-642-00768-2_11
[3]
Kshitij Bansal and Stéphane Demri. 2013. Model-Checking Bounded Multi-Pushdown Systems. In Computer Science-Theory and Applications-8th International Computer Science Symposium in Russia, CSR 2013, Ekaterinburg, Russia, June 25-29, 2013. Proceedings. 405-417. https://doi.org/10.1007/978-3-642-38536-0_35
[4]
Howard Barringer, Ruurd Kuiper, and Amir Pnueli. 1986. A Really Abstract Concurrent Model and its Temporal Logic. In Conference Record of the Thirteenth Annual ACM Symposium on Principles of Programming Languages, St. Petersburg Beach, Florida, USA, January 1986. ACM Press, 173-183. https://doi.org/10.1145/512644.512660
[5]
Laura Bozzelli. 2007. Alternating Automata and a Temporal Fixpoint Calculus for Visibly Pushdown Languages. In CONCUR 2007-Concurrency Theory, Luís Caires and Vasco T. Vasconcelos (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 476-491. https://doi.org/10.1007/978-3-540-74407-8_32
[6]
Laura Bozzelli, Bastien Maubert, and Sophie Pinchinat. 2015. Unifying hyper and epistemic temporal logics. In International Conference on Foundations of Software Science and Computation Structures. Springer, 167-182. https://doi.org/10.1007/978-3-662-46678-0_11
[7]
Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez. 2014. Temporal Logics for Hyperproperties. In Principles of Security and Trust, Martín Abadi and Steve Kremer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 265-284. https://doi.org/10.1007/978-3-642-54792-8_15
[8]
Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (Sept. 2010 ), 1157-1210. https://doi.org/10.3233/JCS-2009-0393
[9]
Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann. 2019. The Hierarchy of Hyperlogics. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019. 1-13. https://doi.org/10.1109/LICS. 2019.8785713
[10]
Patrick Cousot and Radhia Cousot. 1979. Constructive versions of Tarski's fixed point theorems. Pacific J. Math. 82, 1 ( 1979 ), 43-57. https://projecteuclid.org:443/euclid.pjm/1102785059
[11]
Christian Dax and Felix Klaedtke. 2008. Alternation elimination by complementation. In International Conference on Logic for Programming Artificial Intelligence and Reasoning. Springer, 214-229. https://doi.org/10.1007/978-3-540-89439-1_16
[12]
Stéphane Demri, Valentin Goranko, and Martin Lange. 2016. Temporal Logics in Computer Science: Finite-State Systems. Cambridge University Press. https://doi.org/10.1017/CBO9781139236119
[13]
Antoine Durand-Gasselin, Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2015. Model Checking Parameterized Asynchronous Shared-Memory Systems. In Computer Aided Verification-27th International Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 9206 ), Daniel Kroening and Corina S. Pasareanu (Eds.). Springer, 67-84. https://doi.org/10.1007/978-3-319-21690-4_5
[14]
E. Allen Emerson and Charanjit S. Jutla. 1991. Tree Automata, Mu-Calculus and Determinacy (Extended Abstract). In 32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4 October 1991. 368-377. https: //doi.org/10.1109/SFCS. 1991.185392
[15]
Javier Esparza, Pierre Ganty, and Rupak Majumdar. 2016. Parameterized Verification of Asynchronous Shared-Memory Systems. J. ACM 63, 1 ( 2016 ), 10 : 1-10 : 48. https://doi.org/10.1145/2842603
[16]
Bernd Finkbeiner. 2017. Temporal Hyperproperties. Bulletin of the EATCS 123 ( 2017 ).
[17]
Bernd Finkbeiner and Christopher Hahn. 2016. Deciding Hyperproperties. In CONCUR 2016. 13 : 1-13 : 14. https://doi.org/10. 4230/LIPIcs.CONCUR. 2016.13
[18]
Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander Tentrup. 2020. Synthesis from hyperproperties. Acta Informatica 57, 1-2 ( 2020 ), 137-163. https://doi.org/10.1007/s00236-019-00358-2
[19]
Bernd Finkbeiner, Christopher Hahn, Marvin Stenger, and Leander Tentrup. 2019. Monitoring hyperproperties. Formal Methods Syst. Des. 54, 3 ( 2019 ), 336-363. https://doi.org/10.1007/s10703-019-00334-z
[20]
Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. 2015. Algorithms for Model Checking HyperLTL and HyperCTL∗. In CAV 2015. 30-48. https://doi.org/10.1007/978-3-319-21690-4_3
[21]
Olivier Finkel. 2006. On the Accepting Power of 2-Tape Büchi Automata. In STACS 2006, 23rd Annual Symposium on Theoretical Aspects of Computer Science, Marseille, France, February 23-25, 2006, Proceedings. 301-312. https://doi.org/10. 1007/11672142_24
[22]
Olivier Finkel. 2016. Infinite games specified by 2-tape automata. Ann. Pure Appl. Logic 167, 12 ( 2016 ), 1184-1212. https://doi.org/10.1016/j.apal. 2016. 05.005
[23]
Olivier Finkel and Dominique Lecomte. 2009. Decision problems for Turing machines. Inf. Process. Lett. 109, 23-24 ( 2009 ), 1223-1226. https://doi.org/10.1016/j.ipl. 2009. 09.002
[24]
Carlo A. Furia. 2014. Asynchronous Multi-Tape Automata Intersection: Undecidabiliy and Approximation. CoRR abs/1206.4860 ( 2014 ). arXiv: 1206.4860v5 http://arxiv.org/abs/1206.4860v5
[25]
Pierre Ganty and Rupak Majumdar. 2012. Algorithmic verification of asynchronous programs. ACM Trans. Program. Lang. Syst. 34, 1 ( 2012 ), 6 : 1-6 : 48. https://doi.org/10.1145/2160910.2160915
[26]
Pierre Ganty, Rupak Majumdar, and Andrey Rybalchenko. 2009. Verifying liveness for asynchronous programs. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 102-113. https://doi.org/10.1145/1480881.1480895
[27]
Dainis Geidmanis. 1987. On the Capabilities of Alternating and Nondeterministic Multitape Automata. In Fundamentals of Computation Theory, International Conference FCT' 87, Kazan, USSR, June 22-26, 1987, Proceedings. 150-154. https: //doi.org/10.1007/3-540-18740-5_35
[28]
Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020a. Propositional Dynamic Logic for Hyperproperties. In 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020, Vienna, Austria (Virtual Conference) (LIPIcs, Vol. 171 ), Igor Konnov and Laura Kovács (Eds.). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 50 : 1-50 : 22. https://doi.org/10.4230/LIPIcs.CONCUR. 2020.50
[29]
Jens Oliver Gutsfeld, Markus Müller-Olm, and Christoph Ohrem. 2020b. Automata and Fixpoints for Asynchronous Hyperproperties. arXiv: 2010. 11605 [cs.LO]
[30]
Oscar H. Ibarra and Nicholas Q. Trân. 2013. How to synchronize the Heads of a Multitape Automaton. Int. J. Found. Comput. Sci. 24, 6 ( 2013 ), 799-814. https://doi.org/10.1142/S0129054113400194
[31]
Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann. 2018. Team Semantics for the Specification and Verification of Hyperproperties. In 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, August 27-31, 2018, Liverpool, UK (LIPIcs, Vol. 117 ), Igor Potapov, Paul G. Spirakis, and James Worrell (Eds.). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 10 : 1-10 : 16. https://doi.org/10.4230/LIPIcs.MFCS. 2018.10
[32]
Martin Lange. 2005. Weak Automata for the Linear Time-Calculus. In Verification, Model Checking, and Abstract Interpretation, Radhia Cousot (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 267-281. https://doi.org/10.1007/978-3-540-30579-8_18
[33]
Martin Lange. 2015. The Arity Hierarchy in the Polyadic-Calculus. In FICS (EPTCS, Vol. 191 ). 105-116. https://doi.org/10. 4204/EPTCS.191.10
[34]
Isabella Mastroeni and Michele Pasqua. 2017. Hyperhierarchy of Semantics-A Formal Framework for Hyperproperties Verification. In Static Analysis-24th International Symposium, SAS 2017, New York, NY, USA, August 30-September 1, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10422 ), Francesco Ranzato (Ed.). Springer, 232-252. https: //doi.org/10.1007/978-3-319-66706-5_12
[35]
Isabella Mastroeni and Michele Pasqua. 2018. Verifying Bounded Subset-Closed Hyperproperties. In Static Analysis-25th International Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11002 ), Andreas Podelski (Ed.). Springer, 263-283. https://doi.org/10.1007/978-3-319-99725-4_17
[36]
Dimiter Milushev and Dave Clarke. 2013. Incremental Hyperproperty Model Checking via Games. In Proceedings of the 18th Nordic Conference on Secure IT Systems-Volume 8208 ( Ilulissat, Greenland) ( NordSec 2013 ). Springer-Verlag New York, Inc., New York, NY, USA, 247-262. https://doi.org/10.1007/978-3-642-41488-6_17
[37]
Anca Muscholl. 1996. On the Complementation of Asynchronous Cellular Büchi Automata. Theor. Comput. Sci. 169, 2 ( 1996 ), 123-145. https://doi.org/10.1016/S0304-3975 ( 96 ) 00117-X
[38]
Martin Otto. 1999. Bisimulation-invariant PTIME and higher-dimensional-calculus. Theor. Comput. Sci. 224, 1-2 ( 1999 ), 237-265. https://doi.org/10.1016/S0304-3975 ( 98 ) 00314-4
[39]
D. Peled and W. Penczek. 1996. Using Asynchronous Büchi Automata for Eficient Automatic Verification of Concurrent Systems. In Protocol Specification, Testing and Verification XV: Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification, Warsaw, Poland, June 1995. Springer US, Boston, MA, 315-330. https://doi.org/10.1007/978-0-387-34892-6_20
[40]
Shaz Qadeer. 2008. The Case for Context-Bounded Verification of Concurrent Programs. In Model Checking Software, 15th International SPIN Workshop, Los Angeles, CA, USA, August 10-12, 2008, Proceedings (Lecture Notes in Computer Science, Vol. 5156 ), Klaus Havelund, Rupak Majumdar, and Jens Palsberg (Eds.). Springer, 3-6. https://doi.org/10.1007/978-3-540-85114-1_2
[41]
Shaz Qadeer and Jakob Rehof. 2005. Context-Bounded Model Checking of Concurrent Software. In Tools and Algorithms for the Construction and Analysis of Systems, 11th International Conference, TACAS 2005 (Lecture Notes in Computer Science, Vol. 3440 ), Nicolas Halbwachs and Lenore D. Zuck (Eds.). Springer, 93-107. https://doi.org/10.1007/978-3-540-31980-1_7
[42]
Markus N. Rabe. 2016. A temporal logic approach to Information-flow control. Ph.D. Dissertation. Saarland University.
[43]
Michael O. Rabin and Dana S. Scott. 1959. Finite Automata and Their Decision Problems. IBM Journal of Research and Development 3, 2 ( 1959 ), 114-125. https://doi.org/10.1147/rd.32.0114
[44]
Aravinda Prasad Sistla. 1983. Theoretical Issues in the Design and Verification of Distributed Systems. Ph.D. Dissertation. Carnegie-Mellon University, USA.
[45]
Alex Spelten, Wolfgang Thomas, and Sarah Winter. 2011. Trees over Infinite Structures and Path Logics with Synchronization. In Proceedings 13th International Workshop on Verification of Infinite-State Systems, INFINITY 2011, Taipei, Taiwan, 10th October 2011 (EPTCS, Vol. 73 ), Fang Yu and Chao Wang (Eds.). 20-34. https://doi.org/10.4204/EPTCS.73.5
[46]
Larry Joseph Stockmeyer. 1974. The complexity of decision problems in automata theory and logic. Ph.D. Dissertation. MIT.
[47]
Alfred Tarski. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 2 ( 1955 ), 285-309. https://projecteuclid.org:443/euclid.pjm/1103044538
[48]
Moshe Y. Vardi. 1988. A Temporal Fixpoint Calculus. In POPL. ACM Press, 250-259. https://doi.org/10.1145/73560.735822
[49]
Wieslaw Zielonka. 1987. Notes on Finite Asynchronous Automata. ITA 21, 2 ( 1987 ), 99-135.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Proceedings of the ACM on Programming Languages
Proceedings of the ACM on Programming Languages  Volume 5, Issue POPL
January 2021
1789 pages
EISSN:2475-1421
DOI:10.1145/3445980
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 04 January 2021
Published in PACMPL Volume 5, Issue POPL

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Asynchronicity
  2. Fixpoint calculus
  3. Hyperproperties

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)185
  • Downloads (Last 6 weeks)22
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Deciding Asynchronous Hyperproperties for Recursive ProgramsProceedings of the ACM on Programming Languages10.1145/36328448:POPL(33-60)Online publication date: 5-Jan-2024
  • (2024)Monitoring Extended Hypernode LogicIntegrated Formal Methods10.1007/978-3-031-76554-4_9(151-171)Online publication date: 13-Nov-2024
  • (2024)Syntax-Guided Automated Program Repair for HyperpropertiesComputer Aided Verification10.1007/978-3-031-65633-0_1(3-26)Online publication date: 24-Jul-2024
  • (2024)A Remark on the Expressivity of Asynchronous TeamLTL and HyperLTLFoundations of Information and Knowledge Systems10.1007/978-3-031-56940-1_15(275-286)Online publication date: 8-Apr-2024
  • (2023)Logics and Algorithms for HyperpropertiesACM SIGLOG News10.1145/3610392.361039410:2(4-23)Online publication date: 19-Jul-2023
  • (2023)Smart Contract Synthesis Modulo Hyperproperties2023 IEEE 36th Computer Security Foundations Symposium (CSF)10.1109/CSF57540.2023.00006(276-291)Online publication date: Jul-2023
  • (2023)Monitoring Hyperproperties with Prefix TransducersRuntime Verification10.1007/978-3-031-44267-4_9(168-190)Online publication date: 1-Oct-2023
  • (2023)Second-Order HyperpropertiesComputer Aided Verification10.1007/978-3-031-37703-7_15(309-332)Online publication date: 17-Jul-2023
  • (2023)Efficient Loop Conditions for Bounded Model Checking HyperpropertiesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-30823-9_4(66-84)Online publication date: 22-Apr-2023
  • (2023)Bounded Model Checking for Asynchronous HyperpropertiesTools and Algorithms for the Construction and Analysis of Systems10.1007/978-3-031-30823-9_2(29-46)Online publication date: 22-Apr-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media