[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2247596.2247600acmotherconferencesArticle/Chapter ViewAbstractPublication PagesedbtConference Proceedingsconference-collections
research-article

Clydesdale: structured data processing on MapReduce

Published: 27 March 2012 Publication History

Abstract

MapReduce has emerged as a promising architecture for large scale data analytics on commodity clusters. The rapid adoption of Hive, a SQL-like data processing language on Hadoop (an open source implementation of MapReduce), shows the increasing importance of processing structured data on MapReduce platforms. MapReduce offers several attractive properties such as the use of low-cost hardware, fault-tolerance, scalability, and elasticity. However, these advantages have required a substantial performance sacrifice.
In this paper we introduce Clydesdale, a novel system for structured data processing on Hadoop -- a popular implementation of MapReduce. We show that Clydesdale provides more than an order of magnitude in performance improvements compared to existing approaches without requiring any changes to the underlying platform. Clydesdale is aimed at workloads where the data fits a star schema. It draws on column oriented storage, tailored join-plans, and multi-core execution strategies and carefully fits them into the constraints of a typical MapReduce platform. Using the star schema benchmark, we show that Clydesdale is on average 38x faster than Hive. This demonstrates that MapReduce in general, and Hadoop in particular, is a far more compelling platform for structured data processing than previous results suggest.

References

[1]
Capacity Scheduler. http://hadoop.apache.org/common/docs/r0.20.2/capacity-scheduler.html.
[2]
HDFS Issue 385. https://issues.apache.org/jira/browse/HDFS-385.
[3]
Hive. http://hive.apache.org/.
[4]
MAPREDUCE Issue 2386. https://issues.apache.org/jira/browse/MAPREDUCE-2386.
[5]
Next Generation of Apache Hadoop MapReduce -- The Scheduler. http://developer.yahoo.com/blogs/hadoop/posts/2011/03/mapreduce-nextgen-scheduler.
[6]
D. Abadi, S. R. Madden, and N. Hachem. Column-Stores vs. Row-Stores: How Different Are They Really? In SIGMOD, pages 967--980, 2008.
[7]
A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and A. Silberschatz. HadoopDB: An Architectural Hybrid of MapReduce and DBMS Technologies for Analytical Workloads. PVLDB, 2(1):922--933, 2009.
[8]
F. N. Afrati and J. D. Ullman. Optimizing Joins in a Map-Reduce Environment. In EDBT, pages 99--110, 2010.
[9]
A. Ailamaki, D. DeWitt, M. D. Hill, and M. Skounakis. Weaving relations for cache performance. In VLDB, pages 169--180, 2001.
[10]
D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and D. Warneke. Nephele/PACTs: A Programming Model and Execution Framework for Web-Scale Analytical Processing. In SoCC, pages 119--130, 2010.
[11]
A. Behm, V. R. Borkar, M. J. Carey, R. Grover, C. Li, N. Onose, R. Vernica, A. Deutsch, Y. Papakonstantinou, and V. J. Tsotras. ASTERIX: Towards a Scalable, Semistructured Data Platform for Evolving-World Models. Distributed and Parallel Databases, 29(3):185--216, 2011.
[12]
K. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C. Kanne, F. Ozcan, and E. J. Shekita. Jaql: A Scripting Language for Large Scale Semistructured Data Analysis. PVLDB, 2011.
[13]
S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A Comparison of Join Algorithms for Log Processing in MapReduce. In SIGMOD Conference, pages 975--986, 2010.
[14]
P. A. Boncz, S. Manegold, and M. L. Kersten. Database Architecture Optimized for the New Bottleneck: Memory Access. In VLDB, pages 54--65, 1999.
[15]
R. Chaiken, B. Jenkins, P.- Å. Larson, B. Ramsey, D. Shakib, S. Weaver, and J. Zhou. SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. PVLDB, 1(2):1265--1276, 2008.
[16]
B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda, V. Lychagina, Y. Kwon, and M. Wong. Tenzing: A SQL Implementation on the MapReduce Framework. PVLDB, 4(12):1318--1327, 2011.
[17]
S. Chen. Cheetah: A High Performance, Custom Data Warehouse on Top of MapReduce. PVLDB, 3(2):1459--1468, 2010.
[18]
X. Chen, P. E. O'Neil, and E. J. O'Neil. Adjoined Dimension Column Clustering to Improve Data Warehouse Query Performance. In ICDE, pages 1409--1411, 2008.
[19]
J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. CACM, 51(1):107--113, 2008.
[20]
J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, and J. Schad. Hadoop++: Making a Yellow Elephant Run Like a Cheetah. PVLDB, 3(1):518--529, 2010.
[21]
A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-Oriented Storage Techniques for MapReduce. PVLDB, 4(7), 2011.
[22]
A. Gates, O. Natkovich, S. Chopra, P. Kamath, S. Narayanam, C. Olston, B. Reed, S. Srinivasan, and U. Srivastava. Building a HighLevel Dataflow System on top of MapReduce: The Pig Experience. PVLDB, 2(2):1414--1425, 2009.
[23]
G. Graefe. Volcano -- An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering, 6:120--135, February 1994.
[24]
Y. He, R. Lee, S. Zheng, N. Jain, Z. Xu, and X. Zhang. RCFile: A Fast and Space-efficient Data Placement Structure in MapReduce-based Warehouse Systems. In ICDE, 2011.
[25]
H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A Self-tuning System for Big Data Analytics. In CIDR, pages 261--272, 2011.
[26]
B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center. In Networked Systems Design and Implementation, pages 22--22, 2011.
[27]
S. Idreos, M. L. Kersten, and S. Manegold. Self-Organizing Tuple Reconstruction in Column-Stores. In SIGMOD, pages 297--308, 2009.
[28]
M. Isard and Y. Yu. Distributed Data-Parallel Computing Using a High-Level Programming Language. In SIGMOD Conference, pages 987--994, 2009.
[29]
M. Ivanova, M. L. Kersten, and N. Nes. Self-Organizing Strategies for a Column-Store Database. In EDBT, pages 157--168, 2008.
[30]
E. Jahani, M. J. Cafarella, and C. Ré. Automatic Optimization for MapReduce Programs. PVLDB, 4(6), 2011.
[31]
D. Jiang, B. C. Ooi, L. Shi, and S. Wu. The Performance of MapReduce: An In-depth Study. PVLDB, 3(1):472--483, 2010.
[32]
Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama: Leveraging Columnar Storage for Scalable Join Processing in the MapReduce Framework. In SIGMOD Conference, 2011.
[33]
P. E. O'Neil, E. J. O'Neil, and X. Chen. The Star Schema Benchmark (SSB). http://www.cs.umb.edu/ËIJponeil/StarSchemaB.PDF.
[34]
A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and M. Stonebraker. A Comparison of Approaches to Large-Scale Data Analysis. In SIGMOD, pages 165--178, 2009.
[35]
M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden, E. J. O'Neil, P. E. O'Neil, A. Rasin, N. Tran, and S. B. Zdonik. C-Store: A Column-oriented DBMS. In VLDB, pages 553--564, 2005.
[36]
M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The End of an Architectural Era (It's Time for a Complete Rewrite). In VLDB, pages 1150--1160, 2007.
[37]
C. Yang, C. Yen, C. Tan, and S. Madden. Osprey: Implementing MapReduce-style Fault Tolerance in a Shared-Nothing Distributed Database. In ICDE, pages 657--668, 2010.
[38]
H.-c. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-Reduce-Merge: Simplified Relational Data Processing on Large Clusters. In SIGMOD, pages 1029--1040. ACM, 2007.
[39]
M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. MonetDB/X100 - A DBMS In The CPU Cache. IEEE Data Engineering Bulletin, 28(2):17--22, 2005.

Cited By

View all
  • (2018)Hengam a MapReduce-Based Distributed Data Warehouse for Big DataInternational Journal of Artificial Life Research10.4018/IJALR.20180101028:1(16-35)Online publication date: 1-Jan-2018
  • (2018)Handling data skew in joins based on cluster cost partitioning for MapReduceMultiagent and Grid Systems10.3233/MGS-18028314:1(103-123)Online publication date: 16-Apr-2018
  • (2018)Chabok: a Map-Reduce based method to solve data warehouse problemsJournal of Big Data10.1186/s40537-018-0144-55:1Online publication date: 26-Oct-2018
  • Show More Cited By
  1. Clydesdale: structured data processing on MapReduce

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    EDBT '12: Proceedings of the 15th International Conference on Extending Database Technology
    March 2012
    643 pages
    ISBN:9781450307901
    DOI:10.1145/2247596
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 March 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Conference

    EDBT '12

    Acceptance Rates

    Overall Acceptance Rate 7 of 10 submissions, 70%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)6
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 01 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Hengam a MapReduce-Based Distributed Data Warehouse for Big DataInternational Journal of Artificial Life Research10.4018/IJALR.20180101028:1(16-35)Online publication date: 1-Jan-2018
    • (2018)Handling data skew in joins based on cluster cost partitioning for MapReduceMultiagent and Grid Systems10.3233/MGS-18028314:1(103-123)Online publication date: 16-Apr-2018
    • (2018)Chabok: a Map-Reduce based method to solve data warehouse problemsJournal of Big Data10.1186/s40537-018-0144-55:1Online publication date: 26-Oct-2018
    • (2017)ArasInternational Journal of Distributed Systems and Technologies10.4018/IJDST.20170401048:2(47-60)Online publication date: 1-Apr-2017
    • (2017)PaPar: A Parallel Data Partitioning Framework for Big Data Applications2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS)10.1109/IPDPS.2017.119(605-614)Online publication date: May-2017
    • (2017)A MapReduce-based scalable discovery and indexing of structured big dataFuture Generation Computer Systems10.1016/j.future.2017.03.02873:C(32-43)Online publication date: 1-Aug-2017
    • (2017)AtrakThe Journal of Supercomputing10.1007/s11227-017-2037-373:10(4596-4610)Online publication date: 1-Oct-2017
    • (2017)Leveraging MapReduce with Column-Oriented Stores: Study of Solutions and BenefitsBig Data Analytics10.1007/978-981-10-6620-7_5(39-46)Online publication date: 4-Oct-2017
    • (2017)Data Organization and Curation in Big DataHandbook of Big Data Technologies10.1007/978-3-319-49340-4_5(143-178)Online publication date: 26-Feb-2017
    • (2016)Processing Cassandra Datasets with Hadoop-Streaming Based ApproachesIEEE Transactions on Services Computing10.1109/TSC.2015.24448389:1(46-58)Online publication date: 1-Jan-2016
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media