[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2999572.2999587acmconferencesArticle/Chapter ViewAbstractPublication PagesconextConference Proceedingsconference-collections
research-article
Public Access

Low Bandwidth Offload for Mobile AR

Published: 06 December 2016 Publication History

Abstract

Environmental fingerprinting has been proposed as a key enabler to immersive, highly contextualized mobile computing applications, especially augmented reality. While fingerprints can be constructed in many domains (e.g., wireless RF, magnetic field, and motion patterns), visual fingerprinting is especially appealing due to the inherent heterogeneity in many indoor spaces. This visual diversity, however, is also its Achilles' heel -- matching a unique visual signature against a database of millions requires either impractical computation for a mobile device, or to upload large quantities of visual data for cloud offload. Further, most visual "features" tend to be low entropy -- e.g., homogeneous repetitions of floor and ceiling tiles. Our system VisualPrint, proposes a means to offload only the most distinctive visual data, that is, only those visual signatures which stand a good chance to yield a unique match. VisualPrint enables cloud-offloaded visual fingerprinting with efficacy comparable to using whole images, but with an order reduction in network transfer.

References

[1]
Amazon fire phone. https://developer.amazon.com/public/solutions/devices/fire-phone.
[2]
Dextro stream. https://www.dextro.co/.
[3]
Microsoft hololens. https://www.microsoft.com/microsoft-hololens/en-us.
[4]
Nest cam. https://nest.com/camera/meet-nest-cam/.
[5]
Oculus vr. https://www.oculus.com/en-us/.
[6]
Project tango. https://www.google.com/atap/projecttango/, 2014.
[7]
Meerkat: Live stream video. http://meerkatapp.co/, 2015.
[8]
Periscope: Explore the world through someone else's eyes. https://www.periscope.tv/, 2015.
[9]
Tango taking picture while sensing depth. http://stackoverflow.com/questions/29978991/how-to-take-high-res-picture-while-sensing-depth-using-project-tango, 2015.
[10]
P. F. Alcantarilla, A. Bartoli, and A. J. Davison. Kaze features. In ECCV, pages 214--227. Springer, 2012.
[11]
A. Andoni and P. Indyk. E2lsh: Exact euclidean locality-sensitive hashing. Implementation available at, 2004.
[12]
P. Bahl and V. N. Padmanabhan. Radar: An in-building rf-based user location and tracking system. In INFOCOM, volume 2, pages 775--784. Ieee, 2000.
[13]
X. Bao, S. Fan, A. Varshavsky, K. Li, and R. Roy Choudhury. Your reactions suggest you liked the movie: Automatic content rating via reaction sensing. In UbiComp, pages 197--206. ACM, 2013.
[14]
H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (surf). Computer vision and image understanding, 110(3):346--359, 2008.
[15]
E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl. Maui: making smartphones last longer with code offload. In MobiSys, pages 49--62. ACM, 2010.
[16]
M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on Computational geometry, pages 253--262. ACM, 2004.
[17]
J. Fung and S. Mann. Openvidia: parallel gpu computer vision. In Proceedings of the 13th annual ACM international conference on Multimedia, pages 849--852. ACM, 2005.
[18]
M. Gong and Y.-H. Yang. Near real-time reliable stereo matching using programmable graphics hardware. In CVPR, volume 1, pages 924--931. IEEE, 2005.
[19]
S. Hodges, L. Williams, E. Berry, S. Izadi, J. Srinivasan, A. Butler, G. Smyth, N. Kapur, and K. Wood. Sensecam: A retrospective memory aid. In UbiComp, pages 177--193. Springer, 2006.
[20]
W. Hu, B. Amos, Z. Chen, K. Ha, W. Richter, P. Pillai, B. Gilbert, J. Harkes, and M. Satyanarayanan. The case for offload shaping. In HotMobile, pages 51--56. ACM, 2015.
[21]
Y. Hua, B. Xiao, B. Veeravalli, and D. Feng. Locality-sensitive bloom filter for approximate membership query. Computers, IEEE Transactions on, 61(6):817--830, 2012.
[22]
P. Jain, J. Manweiler, A. Acharya, and K. Beaty. Focus: clustering crowdsourced videos by line-of-sight. In SenSys, page 8. ACM, 2013.
[23]
P. Jain, J. Manweiler, and R. Roy Choudhury. Overlay: Practical mobile augmented reality. In MobiSys, pages 331--344. ACM, 2015.
[24]
N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich. The vslam algorithm for robust localization and mapping. In ICRA, pages 24--29. IEEE, 2005.
[25]
R. Kemp, N. Palmer, T. Kielmann, and H. Bal. Cuckoo: a computation offloading framework for smartphones. In Mobile Computing, Applications, and Services, pages 59--79. Springer, 2012.
[26]
A. Kirsch and M. Mitzenmacher. Distance-sensitive bloom filters. In ALENEX, volume 6, pages 41--50. SIAM, 2006.
[27]
K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can offloading computation save energy? Computer, (4):51--56, 2010.
[28]
K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong. Mobile data offloading: how much can wifi deliver? In CoNext, page 26. ACM, 2010.
[29]
L. Li, P. Hu, C. Peng, G. Shen, and F. Zhao. Epsilon: A visible light based positioning system. In NSDI, pages 331--343. USENIX Association, 2014.
[30]
R. LiKamWa, Y. Liu, N. D. Lane, and L. Zhong. Moodscope: Building a mood sensor from smartphone usage patterns. In MobiSys, pages 389--402. ACM, 2013.
[31]
R. LiKamWa, B. Priyantha, M. Philipose, L. Zhong, and P. Bahl. Energy characterization and optimization of image sensing toward continuous mobile vision. In MobiSys, pages 69--82. ACM, 2013.
[32]
Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, and T. Huang. Large-scale image classification: fast feature extraction and svm training. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1689--1696. IEEE, 2011.
[33]
D. G. Lowe. Object recognition from local scale-invariant features. In ICCV, volume 2, pages 1150--1157. Ieee, 1999.
[34]
B. D. Lucas, T. Kanade, et al. An iterative image registration technique with an application to stereo vision. In IJCAI, volume 81, pages 674--679, 1981.
[35]
Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-probe lsh: efficient indexing for high-dimensional similarity search. In VLDB, pages 950--961. VLDB Endowment, 2007.
[36]
G. Papagiannakis, G. Singh, and N. Magnenat-Thalmann. A survey of mobile and wireless technologies for augmented reality systems. Computer Animation and Virtual Worlds, 19(1):3--22, 2008.
[37]
B. Rister, G. Wang, M. Wu, and J. R. Cavallaro. A fast and efficient sift detector using the mobile gpu. In ICASSP, pages 2674--2678. IEEE, 2013.
[38]
E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: an efficient alternative to sift or surf. In ICCV, pages 2564--2571. IEEE, 2011.
[39]
T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct 2d-to-3d matching. In ICCV, pages 667--674. IEEE, 2011.
[40]
M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The case for vm-based cloudlets in mobile computing. Pervasive Computing, IEEE, 8(4):14--23, 2009.
[41]
S. Sen, J. Lee, K.-H. Kim, and P. Congdon. Avoiding multipath to revive inbuilding wifi localization. In MobiSys, pages 249--262. ACM, 2013.
[42]
C. Silpa-Anan and R. Hartley. Optimised kd-trees for fast image descriptor matching. In CVPR, pages 1--8. IEEE, 2008.
[43]
G. Takacs, V. Chandrasekhar, N. Gelfand, Y. Xiong, W.-C. Chen, T. Bismpigiannis, R. Grzeszczuk, K. Pulli, and B. Girod. Outdoors augmented reality on mobile phone using loxel-based visual feature organization. In ICMR, pages 427--434. ACM, 2008.
[44]
B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon. Bundle adjustment a modern synthesis. In Vision algorithms: theory and practice, pages 298--372. Springer, 2000.
[45]
H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, and R. R. Choudhury. No need to war-drive: unsupervised indoor localization. In MobiSys, pages 197--210. ACM, 2012.
[46]
Z. Zhang, R. Deriche, O. Faugeras, and Q.-T. Luong. A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artificial intelligence, 78(1):87--119, 1995.

Cited By

View all
  • (2024)A Liquidity Analysis System for Large-scale Video Streams in the OilfieldACM Transactions on Sensor Networks10.1145/364922220:3(1-22)Online publication date: 13-Apr-2024
  • (2024)Edge-Based Video Stream Generation for Multi-Party Mobile Augmented RealityIEEE Transactions on Mobile Computing10.1109/TMC.2022.323254323:1(409-422)Online publication date: Jan-2024
  • (2024)Deep reinforcement learning based trajectory design and resource allocation for task-aware multi-UAV enabled MEC networksComputer Communications10.1016/j.comcom.2023.11.006213(88-98)Online publication date: Jan-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image ACM Conferences
CoNEXT '16: Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies
December 2016
524 pages
ISBN:9781450342926
DOI:10.1145/2999572
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 06 December 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. augmented reality
  2. bandwidth
  3. latency
  4. offloading

Qualifiers

  • Research-article

Funding Sources

Conference

CoNEXT '16
Sponsor:

Acceptance Rates

CoNEXT '16 Paper Acceptance Rate 30 of 160 submissions, 19%;
Overall Acceptance Rate 198 of 789 submissions, 25%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)61
  • Downloads (Last 6 weeks)7
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Liquidity Analysis System for Large-scale Video Streams in the OilfieldACM Transactions on Sensor Networks10.1145/364922220:3(1-22)Online publication date: 13-Apr-2024
  • (2024)Edge-Based Video Stream Generation for Multi-Party Mobile Augmented RealityIEEE Transactions on Mobile Computing10.1109/TMC.2022.323254323:1(409-422)Online publication date: Jan-2024
  • (2024)Deep reinforcement learning based trajectory design and resource allocation for task-aware multi-UAV enabled MEC networksComputer Communications10.1016/j.comcom.2023.11.006213(88-98)Online publication date: Jan-2024
  • (2024)ReferencesMobile Edge Computing and Communications10.1002/9781119611646.refs(209-243)Online publication date: 27-Dec-2024
  • (2023)UAV-Enabled Mobile-Edge Computing for AI Applications: Joint Model Decision, Resource Allocation, and Trajectory OptimizationIEEE Internet of Things Journal10.1109/JIOT.2022.315161910:7(5662-5675)Online publication date: 1-Apr-2023
  • (2023)Optimization in Mobile Augmented Reality Systems for the Metaverse Over Wireless CommunicationsGLOBECOM 2023 - 2023 IEEE Global Communications Conference10.1109/GLOBECOM54140.2023.10437658(5439-5444)Online publication date: 4-Dec-2023
  • (2022)Edge-SLAM: Edge-Assisted Visual Simultaneous Localization and MappingACM Transactions on Embedded Computing Systems10.1145/356197222:1(1-31)Online publication date: 29-Oct-2022
  • (2022)EdgeXAR: A 6-DoF Camera Multi-target Interaction Framework for MAR with User-friendly Latency CompensationProceedings of the ACM on Human-Computer Interaction10.1145/35322026:EICS(1-24)Online publication date: 17-Jun-2022
  • (2022)Computation Offloading and Service Caching for Mobile Edge Computing Under Personalized Service PreferenceIEEE Transactions on Wireless Communications10.1109/TWC.2022.315113121:8(6568-6583)Online publication date: Aug-2022
  • (2022)SEAR: Scaling Experiences in Multi-user Augmented RealityIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.315046728:5(1982-1992)Online publication date: May-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media