[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1145/2996913.2996935acmotherconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
demonstration
Public Access

Simba: spatial in-memory big data analysis

Published: 31 October 2016 Publication History

Abstract

We present the Simba (<u>S</u>patial <u>I</u>n-Memory <u>B</u>ig data <u>A</u>nalytics) system, which offers scalable and efficient in-memory spatial query processing and analytics for big spatial data. Simba natively extends the Spark SQL engine to support rich spatial queries and analytics through both SQL and DataFrame API. It enables the construction of indexes over RDDs inside the engine in order to work with big spatial data and complex spatial operations. Simba also comes with an effective query optimizer, which leverages its indexes and novel spatial-aware optimizations, to achieve both low latency and high throughput in big spatial data analysis. This demonstration proposal describes key ideas in the design of Simba, and presents a demonstration plan.

References

[1]
http://zeppelin.incubator.apache.org.
[2]
Gdelt project. http://www.gdeltproject.org.
[3]
Openstreepmap project. http://www.openstreetmap.org.
[4]
A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz. Hadoop gis: a high performance spatial data warehousing system over mapreduce. In VLDB, 2013.
[5]
M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data processing in spark. In SIGMOD, 2015.
[6]
F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst., 2008.
[7]
J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI, 2004.
[8]
A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial data. In ICDE, 2015.
[9]
J. N. Hughes, A. Annex, C. N. Eichelberger, A. Fox, A. Hulbert, and M. Ronquest. Geomesa: a distributed architecture for spatio-temporal fusion. In SPIE Defense+ Security, 2015.
[10]
S. T. Leutenegger, M. Lopez, J. Edgington, et al. STR: A simple and efficient algorithm for R-tree packing. In ICDE, 1997.
[11]
S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. MD-hbase: design and implementation of an elastic data infrastructure for cloud-scale location services. In DAPD, 2013.
[12]
D. Xie, F. Li, B. Yao, G. Li, L. Zhou, and M. Guo. Simba: Efficient in-memory spatial analytics. In SIGMOD, 2016.
[13]
S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query processing in cloud. In IEEE CloudDM workshop, 2015.
[14]
J. Yu, J. Wu, and M. Sarwat. Geospark: A cluster computing framework for processing large-scale spatial data. In SIGSPATIAL GIS, 2015.
[15]
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In NSDI, 2012.

Cited By

View all

Index Terms

  1. Simba: spatial in-memory big data analysis

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SIGSPACIAL '16: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
    October 2016
    649 pages
    ISBN:9781450345897
    DOI:10.1145/2996913
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 31 October 2016

    Check for updates

    Author Tags

    1. Simba
    2. big data
    3. distributed system
    4. spatial data anlaysis

    Qualifiers

    • Demonstration

    Funding Sources

    Conference

    SIGSPATIAL'16

    Acceptance Rates

    SIGSPACIAL '16 Paper Acceptance Rate 40 of 216 submissions, 19%;
    Overall Acceptance Rate 257 of 1,238 submissions, 21%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)115
    • Downloads (Last 6 weeks)13
    Reflects downloads up to 28 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)GridMesaFuture Generation Computer Systems10.1016/j.future.2024.02.010155:C(324-339)Online publication date: 1-Jun-2024
    • (2022)Efficient Interactive Global Cellular Signal Strength VisualizationIEEE Transactions on Big Data10.1109/TBDATA.2020.30295598:5(1209-1219)Online publication date: 1-Oct-2022
    • (2021)A Survey on Big Data Processing Frameworks for Mobility AnalyticsACM SIGMOD Record10.1145/3484622.348462650:2(18-29)Online publication date: 31-Aug-2021
    • (2020)DiSAProceedings of the 28th International Conference on Advances in Geographic Information Systems10.1145/3397536.3422333(147-150)Online publication date: 3-Nov-2020
    • (2020)RIDE: A System for Generalized Region of Interest Discovery and Exploration2020 IEEE 36th International Conference on Data Engineering (ICDE)10.1109/ICDE48307.2020.00158(1738-1741)Online publication date: Apr-2020
    • (2020)Cost estimation of spatial join in spatialhadoopGeoInformatica10.1007/s10707-020-00414-xOnline publication date: 5-Jul-2020
    • (2019)Efficient MapReduce computation of topological relations for big geometriesProceedings of the 8th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data10.1145/3356999.3365466(1-8)Online publication date: 5-Nov-2019
    • (2019)Spatial joinsSIGSPATIAL Special10.1145/3355491.335549411:1(13-21)Online publication date: 5-Aug-2019
    • (2019)Geo-Gap Tree: A Progressive Query and Visualization Method for Massive Spatial DataIEEE Access10.1109/ACCESS.2019.29295317(99428-99440)Online publication date: 2019
    • (2019)Query Processing: JoinsEncyclopedia of Big Data Technologies10.1007/978-3-319-77525-8_219(1345-1351)Online publication date: 20-Feb-2019
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Login options

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media